机器学习推动运输与物流行业变革的四种方式
即将开播:5月14日,Jenkins在K8S下的三种部署流程和实战演示
人工智能通过自动驾驶车辆、更好的路线图和更准确的预测使运输和物流变得更智能、更高效。
当瑞士决定通过从其高山公路上消减数万辆货运卡车来减少拥堵和污染时,瑞士建造了圣哥达隧道,这是世界上最长、最深的铁路隧道。现代工程学的壮举对民用和商业实体都是一个福音,但是如此巧妙的建筑项目并不是我们改善运输和物流未来的唯一途径。
相反,在竞争日益激烈和互联互通的世界中,只有29%的运输和物流(T&L)CEO相信他们的公司的收入将在明年增长,越来越多的T&L公司正在转向基于云的新型机器学习服务,可以帮助他们提高效率并为客户带来更好的体验。
云与AI的融合使自主技术(尤其是移动性)得以广泛创新。据PWC的数据显示,这改变了游戏规则,因为68%的运输与物流公司负责人认为,服务提供核心技术的变化将在未来五年内扰乱他们的行业,而65%的人则认为分销渠道的进展也将如此。
推动交通革命
总体而言,机器学习为运输和物流行业的移动革命带来了四个主要领域:预测需求和路线优化、自动驾驶和制图、机器人技术和异常检测。
例如,正在扰乱价值8000亿美元的卡车运输行业的Convoy,通过利用机器学习模型来优化路线。在美国,货运是通过人工经纪人工作的分散的托运人和运输人网络。这导致效率低下的系统,导致每年驾驶的950亿英里美国卡车司机中有40%的人没有运输任何货物就在路上跑,即所谓的“空驶”。Convoy可以分析数百万个运输工作,以创建业内最有效的匹配方式,通过减少空驶里程来增加利润,并且至关重要的是减少排放。
据统计,每年美国的卡车司机在公路上行驶的里程超过 950 亿英里,相当于绕地球 370 万圈。Convoy 是一家总部位于西雅图的物流公司,据称 2018 年用于卡车运输服务的支出将近 8000 亿美元,运输货物 105 亿吨。
简而言之,卡车运输是一个庞大的行业。但未必是高效的行业。卡车司机每年记录的里程中竟然有 40% 是在跑空车,这意味着时间和燃料的巨大浪费。
Convoy 正在打破现状,使用人工智能 (AI) 使其自动化。“我们通过移动应用程序创建了一个数字在线市场,承运人和司机可以使用它直接找到工作,”Convoy 的市场和数据平台工程高级经理 David Tsai 说。
Convoy 的方法是使用机器学习(一种 AI 技术)为托运人和卡车司机提供更好的匹配,从而允许他们使用 Convoy 的匹配系统更高效地运输货物,同时降低双方的成本。拥有内部计算机化系统的大型托运人也可以将 Convoy 的在线数字市场整合到自己的市场中。
不过,卡车运输业正在经历全国至少10万名驾驶员的短缺。目前,有一种解决方案——自动驾驶卡车。在TuSimple,技术团队部署了100多个基于云的AI模块,以安全有效地进行100英里以上的自主商业交付。即使在装满卡车的时速为每小时65英里的情况下,TuSimple的先进AI算法也可以区分共享道路的车辆类型,并确定其速度,并保持TuSimple的卡车在车道中居中,其精度为正负 5厘米。
在东南亚,叫车公司Grab希望提高其实时按需匹配和供应算法。它求助于机器学习工具,以访问支持150万次预订的实时数据计算和数据流,最终将其匹配和供应性能提高30%。
AI和机器学习对T&L行业产生积极影响的另一个例子是Lyft使用AI驱动的时间序列分析解决方案。该技术会自动发现异常现象,从而发出更大的业务问题,并检测需要检查的事件。Lyft通过不必投资大型内部数据科学或手动检查仪表板而节省了大量成本。
正确处理
当然,预测的准确性是运输和物流公司的主要因素,而位于阿联酋的Aramex(提供国际和国内快递、货运代理和在线购物服务)的实时运输业务每分钟处理数千个请求。通过部署完全托管的基于云的服务,使开发人员和数据科学家能够训练,构建和部署AI和ML模型,Aramax的运输时间预测准确性提高了74%,从而减少了与交付相关的服务呼叫40%。