spark初探

首先解压scala,本次选用版本scala-2.11.1

[Hadoop@CentOSsoftware]$tar-xzvfscala-2.11.1.tgz

[hadoop@centossoftware]$su-

[root@centos~]#vi/etc/profile

添加如下内容:

SCALA_HOME=/home/hadoop/software/scala-2.11.1

PATH=$SCALA_HOME/bin

EXPORTSCALA_HOME

[root@centos~]#source/etc/profile

[root@centos~]#scala-version

Scalacoderunnerversion2.11.1--Copyright2002-2013,LAMP/EPFL

然后解压spark,本次选用版本spark-1.0.0-bin-hadoop1.tgz,这次用的是hadoop1.0.4

[hadoop@centossoftware]$tar-xzvfspark-1.0.0-bin-hadoop1.tgz

--------------------------------------分割线--------------------------------------

CentOS6.2(64位)下安装Spark0.8.0详细记录http://www.linuxidc.com/Linux/2014-06/102583.htm

Spark简介及其在Ubuntu下的安装使用http://www.linuxidc.com/Linux/2013-08/88606.htm

安装Spark集群(在CentOS上)http://www.linuxidc.com/Linux/2013-08/88599.htm

HadoopvsSpark性能对比http://www.linuxidc.com/Linux/2013-08/88597.htm

Spark安装与学习http://www.linuxidc.com/Linux/2013-08/88596.htm

Spark并行计算模型http://www.linuxidc.com/Linux/2012-12/76490.htm

--------------------------------------分割线--------------------------------------

进入到spark的conf目录下

[hadoop@centosconf]$cpspark-env.sh.templatespark-env.sh

[hadoop@centosconf]$vispark-env.sh

添加如下内容:

exportSCALA_HOME=/home/hadoop/software/scala-2.11.1

exportSPARK_MASTER_IP=centos.host1

exportSPARK_WORKER_MEMORY=5G

exportJAVA_HOME=/usr/software/jdk

启动

[[email protected]]$sbin/start-master.sh

可以通过http://centos.host1:8080/看到对应界面

[[email protected]]$sbin/start-slaves.shpark://centos.host1:7077

可以通过http://centos.host1:8081/看到对应界面

下面在spark上运行第一个例子:与Hadoop交互的WordCount

首先将word.txt文件上传到HDFS上,这里路径是hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt

进入交互模式

[[email protected]]$master=spark://centos.host1:7077./bin/spark-shell

scala>valfile=sc.textFile("hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt")

scala>valcount=file.flatMap(line=>line.split("")).map(word=>(word,1)).reduceByKey(_+_)

scala>count.collect()

可以看到控制台有如下结果:

res0:Array[(String,Int)]=Array((hive,2),(zookeeper,1),(pig,1),(spark,1),(hadoop,4),(hbase,2))

同时也可以将结果保存到HDFS上

scala>count.saveAsTextFile("hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/result.txt")

接下来再来看下如何运行Java版本的WordCount

这里需要用到一个jar文件:spark-assembly-1.0.0-hadoop1.0.4.jar

WordCount代码如下:

public class WordCount {
 
 private static final Pattern SPACE = Pattern.compile(" ");

 @SuppressWarnings("serial")
 public static void main(String[] args) throws Exception {
  if (args.length < 1) {
   System.err.println("Usage: JavaWordCount <file>");
   System.exit(1);
  }

  SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
  JavaSparkContext ctx = new JavaSparkContext(sparkConf);
  JavaRDD<String> lines = ctx.textFile(args[0], 1);

  JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
     @Override
     public Iterable<String> call(String s) {
      return Arrays.asList(SPACE.split(s));
     }
    });

  JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
     @Override
     public Tuple2<String, Integer> call(String s) {
      return new Tuple2<String, Integer>(s, 1);
     }
    });

  JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
     @Override
     public Integer call(Integer i1, Integer i2) {
      return i1 + i2;
     }
    });

  List<Tuple2<String, Integer>> output = counts.collect();
  for (Tuple2<?, ?> tuple : output) {
   System.out.println(tuple._1() + " : " + tuple._2());
  }
  
  ctx.stop();
 }
}