【MySQL】分区字段列是否有必要再单独建索引
对于分区字段必须是主键的一部分,那么建了复合主键之后,是否需要对分许字段再单独添加一个索引呢?有没有效果?下面来验证一下
1、新建表effect_new(以创建时间按月分区)
CREATE TABLE `effect_new` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `type` tinyint(4) NOT NULL DEFAULT '0', `timezone` varchar(10) DEFAULT NULL, `date` varchar(10) NOT NULL, `hour` varchar(2) DEFAULT NULL, `position` varchar(200) DEFAULT NULL, `country` varchar(32) NOT NULL, `create_time` datetime NOT NULL DEFAULT '1970-01-01 00:00:00', PRIMARY KEY (`id`,`create_time`), KEY `index_date_hour_coun` (`date`,`hour`,`country`) ) ENGINE=InnoDB AUTO_INCREMENT=983041 DEFAULT CHARSET=utf8 PARTITION BY RANGE (TO_DAYS (`create_time`)) (PARTITION p0 VALUES LESS THAN (736754) ENGINE = InnoDB, PARTITION p1 VALUES LESS THAN (736785) ENGINE = InnoDB, PARTITION p2 VALUES LESS THAN (736815) ENGINE = InnoDB, PARTITION p3 VALUES LESS THAN (736846) ENGINE = InnoDB, PARTITION p4 VALUES LESS THAN (736876) ENGINE = InnoDB, PARTITION p5 VALUES LESS THAN (736907) ENGINE = InnoDB, PARTITION p6 VALUES LESS THAN (736938) ENGINE = InnoDB, PARTITION p7 VALUES LESS THAN (736968) ENGINE = InnoDB, PARTITION p8 VALUES LESS THAN (736999) ENGINE = InnoDB, PARTITION p9 VALUES LESS THAN (737029) ENGINE = InnoDB, PARTITION p10 VALUES LESS THAN (737060) ENGINE = InnoDB);
2、插入部分数据数据,
INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('1', '0', 'GMT+8', '2017-07-01', '', 'M-NotiCleanFull-FamilyRecom-0026', '', '2017-07-02 00:07:02'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('2', '1', 'GMT+8', '2017-09-30', '23', 'Ma5dtJub', 'EG', '2017-10-01 00:00:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('3', '1', 'GMT+8', '2017-09-10', '10', '28', 'DZ', '2017-09-11 00:08:20'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('4', '1', 'GMT+8', '2017-02-03', '20', '32', 'AD', '2017-02-04 00:00:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('5', '0', 'GMT+8', '2017-03-05', '2', NULL, 'AI', '2017-03-06 02:10:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('6', '0', 'GMT+8', '2017-09-23', '13', 'M-BrandSplash-S-0038', 'AG', '2017-09-23 13:00:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('7', '1', NULL, '2017-10-13', '12', 'BB-Main-AppAd-0018', 'AF', '2017-10-14 12:00:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('8', '0', 'GMT+8', '2017-10-28', '2', 'M-ChargeReminder-S-0040', 'AE', '2017-10-29 00:00:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('9', '1', 'GMT+8', '2017-10-09', NULL, '30', 'AI', '2017-10-10 00:09:00'); INSERT INTO `effect_new` (`id`, `type`, `timezone`, `date`, `hour`, `position`, `country`, `create_time`) VALUES ('10', '0', 'GMT+8', '2017-10-05', '5', ' M-BrandSplash', 'LA', '2017-10-06 05:10:00');
3、分析语句
EXPLAIN PARTITIONS select * from effect_new_index where create_time = '2017-10-14 12:00:00'
结果为:
id | select_type | table | partitions | tpye | possible_keys | key | key_len | ref | rows | filtered | extra |
1 | SIMPLE | effect_new | p8 | ALL | null | null | null | null | 391515 | 10 | Using where |
4、给表effect_new添加索引idx_ctime
5、分析添加索引后的执行计划
结果为:
id | select_type | table | partitions | tpye | possible_keys | key | key_len | ref | rows | filtered | extra |
1 | SIMPLE | effect_new | p8 | ref | idx_ctime | idx_ctime | 5 | const | 60760 | 100 | null |
6、结论:
虽然表已经根据此字段分区,但这不能等同于索引。分了区,只能说该字段为某个值的记录会在某个分区里面,但不是索引,还要一顿好找。
有时候,主键不等于分区依据列,这时候主键又想建聚集索引的话,那么必须包含分区依据列,搞成复合主键。那么,这种情况下,分区依据列不就有索引了吗?是的,可是它不够快,如果在这个复合索引里面,分区依据列不排在第一位,就不够快,如果查找语句里常常用分区依据列作为过滤条件,就有必要为分区依据列额外单独建立一个索引。
相关推荐
前端 2020-08-03
骷髅狗 2020-08-02
wghou 2020-06-21
wghou 2020-06-16
覆雪蓝枫 2020-06-16
骷髅狗 2020-06-14
骷髅狗 2020-06-12
sixyearsorless 2020-05-27
zhanghaibing00 2020-05-27
maiktom 2020-05-26
比格杰森 2020-05-26
e度空间 2020-05-17
maiktom 2020-05-11
buttonChan 2020-05-10
Enjoyendless 2020-05-08
sixyearsorless 2020-05-07
骷髅狗 2020-04-24