Java虚拟机:垃圾收集算法

垃圾回收机制的意义

Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制,Java中的对象不再有“作用域”的概念,只有对象的引用才有“作用域”。垃圾回收可以有效的防止内存泄露,有效的使用空闲的内存。

ps:内存泄露是指该内存空间使用完毕之后未回收,在不涉及复杂数据结构的一般情况下,Java 的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度,我们有时也将其称为“对象游离”。

垃圾回收算法

标记清除算法

标记-清除算法分为标记和清除两个阶段。该算法首先从根集合进行扫描,对存活的对象对象标记,标记完毕后,再扫描整个空间中未被标记的对象并进行回收,如下图所示。

Java虚拟机:垃圾收集算法

标记-清除算法的主要不足有两个:

  • 效率问题:标记和清除两个过程的效率都不高;
  • 空间问题:标记-清除算法不需要进行对象的移动,并且仅对不存活的对象进行处理,因此标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

Java虚拟机:垃圾收集算法

复制算法

复制算法将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这种算法适用于对象存活率低的场景,比如新生代。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。该算法示意图如下所示:

Java虚拟机:垃圾收集算法

事实上,现在商用的虚拟机都采用这种算法来回收新生代。因为研究发现,新生代中的对象每次回收都基本上只有10%左右的对象存活,所以需要复制的对象很少,效率还不错。正如在博文《JVM 内存模型概述》中介绍的那样,实践中会将新生代内存分为一块较大的Eden空间和两块较小的Survivor空间 (如下图所示),每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是 8:1,也就是每次新生代中可用内存空间为整个新生代容量的90% ( 80%+10% ),只有10% 的内存会被“浪费”。

Java虚拟机:垃圾收集算法

标记整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。标记整理算法的标记过程类似标记清除算法,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,类似于磁盘整理的过程,该垃圾回收算法适用于对象存活率高的场景(老年代),其作用原理如下图所示。

Java虚拟机:垃圾收集算法

标记整理算法与标记清除算法最显著的区别是:标记清除算法不进行对象的移动,并且仅对不存活的对象进行处理;而标记整理算法会将所有的存活对象移动到一端,并对不存活对象进行处理,因此其不会产生内存碎片。标记整理算法的作用示意图如下:

Java虚拟机:垃圾收集算法

分代收集算法

对于一个大型的系统,当创建的对象和方法变量比较多时,堆内存中的对象也会比较多,如果逐一分析对象是否该回收,那么势必造成效率低下。分代收集算法是基于这样一个事实:不同的对象的生命周期(存活情况)是不一样的,而不同生命周期的对象位于堆中不同的区域,因此对堆内存不同区域采用不同的策略进行回收可以提高 JVM 的执行效率。当代商用虚拟机使用的都是分代收集算法:新生代对象存活率低,就采用复制算法;老年代存活率高,就用标记清除算法或者标记整理算法。Java堆内存一般可以分为新生代、老年代和永久代三个模块,如下图所示:

Java虚拟机:垃圾收集算法

新生代(Young Generation)

新生代的目标就是尽可能快速的收集掉那些生命周期短的对象,一般情况下,所有新生成的对象首先都是放在新生代的。新生代内存按照 8:1:1 的比例分为一个eden区和两个survivor(survivor0,survivor1)区,大部分对象在Eden区中生成。在进行垃圾回收时,先将eden区存活对象复制到survivor0区,然后清空eden区,当这个survivor0区也满了时,则将eden区和survivor0区存活对象复制到survivor1区,然后清空eden和这个survivor0区,此时survivor0区是空的,然后交换survivor0区和survivor1区的角色(即下次垃圾回收时会扫描Eden区和survivor1区),即保持survivor0区为空,如此往复。特别地,当survivor1区也不足以存放eden区和survivor0区的存活对象时,就将存活对象直接存放到老年代。如果老年代也满了,就会触发一次FullGC,也就是新生代、老年代都进行回收。注意,新生代发生的GC也叫做MinorGC,MinorGC发生频率比较高,不一定等 Eden区满了才触发。

老年代(Old Generation)

老年代存放的都是一些生命周期较长的对象,就像上面所叙述的那样,在新生代中经历了N次垃圾回收后仍然存活的对象就会被放到老年代中。此外,老年代的内存也比新生代大很多(大概比例是1:2),当老年代满时会触发Major GC(Full GC),老年代对象存活时间比较长,因此FullGC发生的频率比较低。

永久代(Permanent Generation)

永久代主要用于存放静态文件,如Java类、方法等。永久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如使用反射、动态代理、CGLib等bytecode框架时,在这种时候需要设置一个比较大的永久代空间来存放这些运行过程中新增的类。

小结

Java虚拟机:垃圾收集算法

由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。垃圾回收有两种类型,Minor GC 和 Full GC。

  • Minor GC:对新生代进行回收,不会影响到年老代。因为新生代的 Java 对象大多死亡频繁,所以 Minor GC 非常频繁,一般在这里使用速度快、效率高的算法,使垃圾回收能尽快完成。
  • Full GC:也叫 Major GC,对整个堆进行回收,包括新生代和老年代。由于Full GC需要对整个堆进行回收,所以比Minor GC要慢,因此应该尽可能减少Full GC的次数,导致Full GC的原因包括:老年代被写满、永久代(Perm)被写满和System.gc()被显式调用等。

相关推荐