深度学习之tensorflow框架(中)
会话
- 开启会话
- tf.Session用于完整的程序中
- tf.InteractiveSession用于交互式上下文中的tensorflow
- 查看张量的值
- 都必须在会话里面
- c_new_value=new_sess.run(c_new)
- print("c_new_value:\n",c_new_value)
- print("a_new_value:\n",a_new.eval())
def session_demo(): """ 会话的演示 :return: """ a_t = tf.constant(2, name="a_t") b_t = tf.constant(3, name="b_t") c_t = tf.add(a_t, b_t, name="c_t") print("a_t:\n", a_t) print("b_t:\n", b_t) print("tensorflow加法运算的结果:\n", c_t) # 查看默认图 # 方法1:调用方法 default_g = tf.compat.v1.get_default_graph() print("default_g:\n", default_g) # 方法2:查看属性 print("a_t的图属性:\n", a_t.graph) print("c_t的图属性:\n", c_t.graph) # 开启会话 with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(allow_soft_placement=True,log_device_placement=True)) as sess: # c_t_value = sess.run(c_t) # print("c_t_value:\n", c_t_value) abc = sess.run([a_t,b_t,c_t]) print("abc:\n",abc) print("sess的图属性:\n", sess.graph) return None def feed_demo(): """ feed操作 :return: """ a=tf.compat.v1.placeholder(dtype=tf.float32) b=tf.compat.v1.placeholder(dtype=tf.float32) sum_ab=tf.add(a,b) print("a:\n",a) print("b:\n",b) print("sum_ab:\n",sum_ab) with tf.compat.v1.Session() as sess: sum_ab_value=sess.run(sum_ab,feed_dict={a:3.9,b:3.5}) print("sum_ab_value:\n",sum_ab_value) return None
相关推荐
Micusd 2020-11-19
xjtukuixing 2020-10-27
lybbb 2020-10-15
lybbb 2020-09-29
ghjk0 2020-09-24
yamaxifeng 2020-09-09
GDGYZL 2020-08-28
lybbb 2020-08-28
Icevivian 2020-08-25
comwayLi 2020-08-16
carbon0 2020-08-16
源式羽语 2020-08-09
sherry颖 2020-08-01
songbinxu 2020-07-19
sherry颖 2020-07-18
Niteowl 2020-07-15
Kindle君 2020-07-15
源式羽语 2020-07-04
源式羽语 2020-06-28