Elasticsearch kibana官方基础本地实践
官方资源链接
- https://www.elastic.co/cn/start
- elasticsearch官方基础视频教程
- https://www.elastic.co/cn/webinars/getting-started-elasticsearch?elektra=startpage
- kibana官方基础视频教程
- https://www.elastic.co/cn/webinars/getting-started-kibana?elektra=startpage
动手实践
当前最新版本 Elasticsearch 7.7.0
运行环境
- a.JDK8+
- b.系统可用内存>2G
- c.win7
下载 个人觉得迅雷相对较快
- https://artifacts.elastic.co/downloads/kibana/kibana-7.7.0-windows-x86_64.zip
- https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.7.0-windows-x86_64.zip
解压运行启动服务
?elasticsearch/bin elasticsearch.bat #编辑 kibana.yml elasticsearch.hosts: ["http://localhost:9200"] #若elasticsearch开启用户密码则需要配置 elasticsearch.username: "elastic" elasticsearch.password: "changeme" 国际化中文界面开启 i18n.locale: "zh-CN" #双击启动 bin/kibana.bat #浏览器访问 http://localhost:5601/
菜单点击dev-tools工具进行基本使用调试
计算集群中文档的数量
GET _count { "query": { "match_all": {} } }
添加文档
PUT testuser/_doc/1 { "name":"kuKi", "address":"北京", "sex":"女", "about":"runing climbing joking", "age":24 }
检索文档
GET testuser/_doc/1
搜索全部文档
GET testuser/_search
URL参数搜索
GET testuser/_search?q=address:上海
表达式搜索 match查询
GET testuser/_search{"query":{ "match": { "address": "上海" } }}
表达式 匹配加过滤
GET testuser/_search { "query":{ "bool": { "must": [ {"match": { "address": "上海" }} ], "filter": [ { "range": { "age": { "gte": 15, "lte": 25 } } } ] } } }
全文检索
GET testuser/_search { "query": { "match": { "address": "北京" } } }
检索短语搜索
GET testuser/_search { "query": { "match_phrase": { "about": "runing climbing" } } }
高亮检索结果显示
GET testuser/_search { "query": { "match_phrase": { "about": "runing climbing" } }, "highlight": { "fields": { "about": {} } } }
聚合分析
GET testuser/_search { "query":{ "bool": { "must": [ {"match": { "address": "上海" }} ], "filter": [ { "range": { "age": { "gte": 15, "lte": 25 } } }]}}}
分词处理
GET testuser/_analyze { "text": ["goods morning every body"] }
更多特性
suggestions、geolocation、percolation、fuzzy 与 partial matching 等特性后面继续慢慢研究
相关推荐
molong0 2020-08-06
YYDU 2020-06-21
katanaFlower 2020-06-21
newbornzhao 2020-09-14
做对一件事很重要 2020-09-07
renjinlong 2020-09-03
明瞳 2020-08-19
李玉志 2020-08-19
mengyue 2020-08-07
AFei00 2020-08-03
molong0 2020-08-03
wenwentana 2020-08-03
YYDU 2020-08-03
另外一部分,则需要先做聚类、分类处理,将聚合出的分类结果存入ES集群的聚类索引中。数据处理层的聚合结果存入ES中的指定索引,同时将每个聚合主题相关的数据存入每个document下面的某个field下。
sifeimeng 2020-08-03
心丨悦 2020-08-03
liangwenrong 2020-07-31
sifeimeng 2020-08-01
mengyue 2020-07-30