消灭敏感词是每个公民义不容辞的责任
最近在做一个项目,寻遍了 Node 开源社区居然没有发现一个好用的敏感词过滤库,有那么几个库外观上看起来似乎还不错,用起来却一塌糊涂,震惊有余,失望至极。于是花了一天时间自己撸了一个库,库名叫 fastscan,这是我的第一个 Node 开源项目,它也可以用于浏览器环境。fastscan 基于广为人知的 ahocorasick 高性能字符串匹配算法。
项目地址:https://github.com/pyloque/fastscan
演示地址:https://pyloque.github.com/fastscan
考虑到太多的违禁词汇,所以缩小化显示,缩小到让你看不清楚。如果想看清楚一点,还是去演示地址里面看吧(文末点击「阅读原文」)。消灭敏感词是每个公民义不容辞的责任!读者们你们要是敢举报,看我不砍死你!
安装方法
# 安装到当前项目 npm install --save fastscan # 写了不少单元测试,感兴趣运行一下 npm test
使用方法
import FastScanner from fastscan var words = ["今日头条","微信", "支付宝"] var scanner = new FastScanner(words) var content = "今日头条小程序终于来了,这是继微信、支付宝、百度后,第四个推出小程序功能的App。猫眼电影率先试水,出现在今日头条。" var offWords = scanner.search(content) console.log(offWords) var hits = scanner.hits(content) console.log(hits) ------------- [ [ 0, '今日头条' ], [ 15, '微信' ], [ 18, '支付宝' ], [ 53, '今日头条' ] ] { '今日头条': 2, '微信': 1, '支付宝': 1 }
API
- 查询匹配的词汇以及所在字符串的位置 search(content, option={})
- 查询匹配词汇的命中数量 hits(content, options={})
- 临时动态增加词汇,不修正其它词汇的回溯指针 add(word)
options = {quick: false, longest: false}
- quick 选项表示快速模式,匹配到一个就立即返回
- longest 表示最长模式,同一个位置出现多个词汇(中国、中国人),选择最长的一个(中国人)
- 默认匹配出所有的词汇,同一个位置可能会出现多个词汇
性能
项目代码使用原生的 js 实现,我开始非常担心词汇树的构建速度会不会太慢。经测试后发现虽然性能不算太快,不过也不是太差,对于绝大多数项目来说已经绰绰有余了。我分别测试了构造 20000~100000 个词汇的树结构,每个词汇随机在 10~20之间,耗时情况如下
20000 words 385ms
40000 words 654ms
60000 words 1108ms
80000 words 1273ms
100000 words 1659ms
如果你的词汇比较短小,构建树的速度还会更快。
查询性能我并不担心,因为 ahocorasick 算法在词汇长度较短的情况下复杂度是 O(n),性能和被过滤内容的长度乘线性变化。下面我使用 100000 词汇量构建的树分别对 20000 ~ 100000字的内容进行了过滤,耗时情况如下
20000 words 12ms
40000 words 28ms
60000 words 35ms
80000 words 49ms
100000 words 51ms
fastscan 可以做到以迅雷不及掩耳的速度扫遍一幅 10w 字的长文,10w 大概就是一部中篇小说的长度了。如果你要扫百万字的长篇小说,那还是建议你分章分节来扫吧。
内存占用也是需要考虑的点,内存对于 Node 程序来说本来就非常有限,如果因为敏感词树占据了太大的内存那是非常要不得的大问题。所以我也对内存占用进行了测试,下面是测试的结果
0 words1 4M
20000 words 81M
40000 words 135M
60000 words 184M
80000 words 234M
100000 words 277M
词汇量不是太大的话,这样的内存占用还是可以接受的。如果你对内存占用不满意,那就只能使用 Node 的 C 语言扩展来打造更高性能的库了,考虑到成本问题,恕我目前无能为力。
注:不得不说,node 社区发布开源类库太方便了,npm login && npm publish 轻松搞定。个人觉得这大概就是 node 轮子多的罪魁祸首。对比之前发布 java 社区开源项目,感觉自己头发都快掉光了,造轮子比发布轮子还要轻松。
如果读者比较关心算法的原理和细节,请关注我的徽信公众号「码洞」,后续我会编写相关文章来仔细讲解算法的原理,以及对 fastscan 项目代码的剖析。