支撑百万并发的数据库架构如何设计?


支撑百万并发的数据库架构如何设计?


前言

作为一个全球人数最多的国家,一个再怎么凄惨的行业,都能找出很多的人为之付出。而在这个互联网的时代,IT公司绝对比牛毛还多很多。但是大多数都是创业公司,长期存活的真的不多。大多数的IT项目在注册量从0-100万,日活跃1-5万,说实话就这种系统随便找一个有几年工作经验的高级工程师,然后带几个年轻工程师,随便干干都可以做出来。

因为这样的系统,实际上主要就是在前期快速的进行业务功能的开发,搞一个单块系统部署在一台服务器上,然后连接一个数据库就可以了。接着大家就是不停的在一个工程里填充进去各种业务代码,尽快把公司的业务支撑起来。

但是如果真的发展的还可以,可能就会遇到如下问题:

在运行的过程中系统访问数据库的性能越来越差,单表数据量越来越大,一些复杂查询 SQL直接拖垮!

这种时候就不得不考虑的解决方案:缓存,负载均衡,项目分块(微服务);数据库:读写分离,分库分表等技术

如果说此时你还是一台数据库服务器在支撑每秒上万的请求,负责任的告诉你,每次高峰期会出现下述问题:

  • 数据库服务器的磁盘 IO、网络带宽、CPU 负载、内存消耗,都会达到非常高的情况,数据库所在服务器的整体负载会非常重,甚至都快不堪重负了。
  • 高峰期时,本来你单表数据量就很大,SQL 性能就不太好,这时加上你的数据库服务器负载太高导致性能下降,就会发现你的 SQL 性能更差了。
  • 最明显的一个感觉,就是你的系统在高峰期各个功能都运行的很慢,用户体验很差,点一个按钮可能要几十秒才出来结果。
  • 如果你运气不太好,数据库服务器的配置不是特别的高的话,弄不好你还会经历数据库宕机的情况,因为负载太高对数据库压力太大了。

其实大多数公司的瓶颈都在数据库,其实如果把上面的解决方案,都实现了,基本上就没的什么问题了,举例:

如果订单一年有 1 亿条数据,可以把订单表一共拆分为 1024 张表,分散在5个库中,这样 1 亿数据量的话,分散到每个表里也就才 10 万量级的数据量,然后这上千张表分散在 5 台数据库里就可以了。

在写入数据的时候,需要做两次路由,先对订单 id hash 后对数据库的数量取模,可以路由到一台数据库上,然后再对那台数据库上的表数量取模,就可以路由到数据库上的一个表里了。

通过这个步骤,就可以让每个表里的数据量非常小,每年 1 亿数据增长,但是到每个表里才 10 万条数据增长,这个系统运行 10 年,每个表里可能才百万级的数据量。

全局唯一ID

在分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是一个表分成多个表之后,每个表的 id 都是从 1 开始累加自增长,那肯定不对啊。

举个例子,你的订单表拆分为了 1024 张订单表,每个表的 id 都从 1 开始累加,这个肯定有问题了!

你的系统就没办法根据表主键来查询订单了,比如 id = 50 这个订单,在每个表里都有!

所以此时就需要分布式架构下的全局唯一 id 生成的方案了,在分库分表之后,对于插入数据库中的核心 id,不能直接简单使用表自增 id,要全局生成唯一 id,然后插入各个表中,保证每个表内的某个 id,全局唯一。

比如说订单表虽然拆分为了 1024 张表,但是 id = 50 这个订单,只会存在于一个表里。

那么如何实现全局唯一 id 呢?有以下几种方案:

方案一:独立数据库自增 id

这个方案就是说你的系统每次要生成一个 id,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。

比如说你有一个 auto_id 库,里面就一个表,叫做 auto_id 表,有一个 id 是自增长的。

那么你每次要获取一个全局唯一 id,直接往这个表里插入一条记录,获取一个全局唯一 id 即可,然后这个全局唯一 id 就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的,因为 auto_id 库要是承载个每秒几万并发,肯定是不现实的了。

方案二:UUID

这个每个人都应该知道吧,就是用 UUID 生成一个全局唯一的 id。

好处就是每个系统本地生成,不要基于数据库来了。不好之处就是,UUID 太长了,作为主键性能太差了,不适合用于主键。

如果你是要随机生成个什么文件名了,编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。

方案三:获取系统当前时间

这个方案的意思就是获取当前时间作为全局唯一的 id。但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个肯定是不合适的。

一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户 id + 业务含义编码。

方案四:SnowFlake 算法的思想分析

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

支撑百万并发的数据库架构如何设计?

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分,是 1 个 bit:0,这个是无意义的。
  • 第二个部分是 41 个 bit:表示的是时间戳。
  • 第三个部分是 5 个 bit:表示的是机房 id,10001。
  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。
  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

①1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

②41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

③10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器)。

④12 bit:这个是用来记录同一个毫秒内产生的不同 id。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 id 就出来了,类似于:

支撑百万并发的数据库架构如何设计?

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id。

SnowFlake 算法JAVA版(含测试方法):

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.CountDownLatch;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import lombok.ToString;
/** 
* Copyright: Copyright (c) 2019 
* 
* @ClassName: IdWorker.java
* @Description: <p>SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。
* 					其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。
* 					这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,
* 					用 10 bit 作为工作机器 id,12 bit 作为序列号
*				</p>
* @version: v1.0.0
* @author: BianPeng
* @date: 2019年4月11日 下午3:13:41 
*
* Modification History:
* Date 		Author Version Description
*---------------------------------------------------------------*
* 2019年4月11日 		BianPeng v1.0.0 initialize
*/
@ToString
public class SnowflakeIdFactory {

	static Logger log = LoggerFactory.getLogger(SnowflakeIdFactory.class);

 private final long twepoch = 1288834974657L;
 private final long workerIdBits = 5L;
 private final long datacenterIdBits = 5L;
 private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
 private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 private final long sequenceBits = 12L;
 private final long workerIdShift = sequenceBits;
 private final long datacenterIdShift = sequenceBits + workerIdBits;
 private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 private final long sequenceMask = -1L ^ (-1L << sequenceBits);

 private long workerId;
 private long datacenterId;
 private long sequence = 0L;
 private long lastTimestamp = -1L;



 public SnowflakeIdFactory(long workerId, long datacenterId) {
 if (workerId > maxWorkerId || workerId < 0) {
 throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
 }
 if (datacenterId > maxDatacenterId || datacenterId < 0) {
 throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
 }
 this.workerId = workerId;
 this.datacenterId = datacenterId;
 }

 public synchronized long nextId() {
 long timestamp = timeGen();
 if (timestamp < lastTimestamp) {
 //服务器时钟被调整了,ID生成器停止服务.
 throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
 }
 if (lastTimestamp == timestamp) {
 sequence = (sequence + 1) & sequenceMask;
 if (sequence == 0) {
 timestamp = tilNextMillis(lastTimestamp);
 }
 } else {
 sequence = 0L;
 }

 lastTimestamp = timestamp;
 return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
 }

 protected long tilNextMillis(long lastTimestamp) {
 long timestamp = timeGen();
 while (timestamp <= lastTimestamp) {
 timestamp = timeGen();
 }
 return timestamp;
 }

 protected long timeGen() {
 return System.currentTimeMillis();
 }

 public static void testProductIdByMoreThread(int dataCenterId, int workerId, int n) throws InterruptedException {
 List<Thread> tlist = new ArrayList<>();
 Set<Long> setAll = new HashSet<>();
 CountDownLatch cdLatch = new CountDownLatch(10);
 long start = System.currentTimeMillis();
 int threadNo = dataCenterId;
 Map<String,SnowflakeIdFactory> idFactories = new HashMap<>();
 for(int i=0;i<10;i++){
 //用线程名称做map key.
 idFactories.put("snowflake"+i,new SnowflakeIdFactory(workerId, threadNo++));
 }
 for(int i=0;i<10;i++){
 Thread temp =new Thread(new Runnable() {
 @Override
 public void run() {
 Set<Long> setId = new HashSet<>();
 SnowflakeIdFactory idWorker = idFactories.get(Thread.currentThread().getName());
 for(int j=0;j<n;j++){
 setId.add(idWorker.nextId());
 }
 synchronized (setAll){
 setAll.addAll(setId);
 log.info("{}生产了{}个id,并成功加入到setAll中.",Thread.currentThread().getName(),n);
 }
 cdLatch.countDown();
 }
 },"snowflake"+i);
 tlist.add(temp);
 }
 for(int j=0;j<10;j++){
 tlist.get(j).start();
 }
 cdLatch.await();

 long end1 = System.currentTimeMillis() - start;

 log.info("共耗时:{}毫秒,预期应该生产{}个id, 实际合并总计生成ID个数:{}",end1,10*n,setAll.size());

 }

 public static void testProductId(int dataCenterId, int workerId, int n){
 SnowflakeIdFactory idWorker = new SnowflakeIdFactory(workerId, dataCenterId);
 SnowflakeIdFactory idWorker2 = new SnowflakeIdFactory(workerId+1, dataCenterId);
 Set<Long> setOne = new HashSet<>();
 Set<Long> setTow = new HashSet<>();
 long start = System.currentTimeMillis();
 for (int i = 0; i < n; i++) {
 setOne.add(idWorker.nextId());//加入set
 }
 long end1 = System.currentTimeMillis() - start;
 log.info("第一批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setOne.size(),end1);

 for (int i = 0; i < n; i++) {
 setTow.add(idWorker2.nextId());//加入set
 }
 long end2 = System.currentTimeMillis() - start;
 log.info("第二批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setTow.size(),end2);

 setOne.addAll(setTow);
 log.info("合并总计生成ID个数:{}",setOne.size());

 }

 public static void testPerSecondProductIdNums(){
 SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
 long start = System.currentTimeMillis();
 int count = 0;
 for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {
 /** 测试方法一: 此用法纯粹的生产ID,每秒生产ID个数为400w+ */
 	//idWorker.nextId();
 /** 测试方法二: 在log中打印,同时获取ID,此用法生产ID的能力受限于log.error()的吞吐能力.
 * 每秒徘徊在10万左右. */
 	log.info(""+idWorker.nextId());
 }
 long end = System.currentTimeMillis()-start;
 System.out.println(end);
 System.out.println(count);
 }

 public static void main(String[] args) {
 /** case1: 测试每秒生产id个数?
 * 结论: 每秒生产id个数400w+ 
 */
 //testPerSecondProductIdNums();

 /** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?
 * 结论: 验证通过,没有重复. 
 */
 //testProductId(1,2,10000);//验证通过!
 //testProductId(1,2,20000);//验证通过!

 /** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?
 * 结论: 验证通过,没有重复.
 */
 try {
 testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }
}

这个算法也叫雪花算法我使用的类源码:https://gitee.com/flying-cattle/earn_knife/blob/master/item-common/src/main/java/com/item/util/SnowflakeIdWorker.java

项目是一个递进的过程,优先考虑缓存,其次读写分离,再分表分库。当然这只是个人想法,各位伙伴还是根据自己的项目和业务来综合考虑实行方案。

作者:边鹏_尛爺鑫

原文:https://my.oschina.net/bianxin/blog/3035494

相关推荐