python计算最小优先级队列代码分享
代码如下:
# -*- coding: utf-8 -*- class Heap(object): @classmethod def parent(cls, i): """父结点下标""" return int((i - 1) >> 1); @classmethod def left(cls, i): """左儿子下标""" return (i << 1) + 1; @classmethod def right(cls, i): """右儿子下标""" return (i << 1) + 2; class MinPriorityQueue(list, Heap): @classmethod def min_heapify(cls, A, i, heap_size): """最小堆化A[i]为根的子树""" l, r = cls.left(i), cls.right(i) if l < heap_size and A[l] < A[i]: least = l else: least = i if r < heap_size and A[r] < A[least]: least = r if least != i: A[i], A[least] = A[least], A[i] cls.min_heapify(A, least, heap_size) def minimum(self): """返回最小元素,伪码如下: HEAP-MINIMUM(A) 1 return A[1] T(n) = O(1) """ return self[0] def extract_min(self): """去除并返回最小元素,伪码如下: HEAP-EXTRACT-MIN(A) 1 if heap-size[A] < 1 2 then error "heap underflow" 3 min ← A[1] 4 A[1] ← A[heap-size[A]] // 尾元素放到第一位 5 heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A] 6 MIN-HEAPIFY(A, 1) // 保持最小堆性质 7 return min T(n) = θ(lgn) """ heap_size = len(self) assert heap_size > 0, "heap underflow" val = self[0] tail = heap_size - 1 self[0] = self[tail] self.min_heapify(self, 0, tail) self.pop(tail) return val def decrease_key(self, i, key): """将i处的值减少到key,伪码如下: HEAP-DECREASE-KEY(A, i, key) 1 if key > A[i] 2 then error "new key is larger than current key" 3 A[i] ← key 4 while i > 1 and A[PARENT(i)] > A[i] // 不是根结点且父结点更大时 5 do exchange A[i] ↔ A[PARENT(i)] // 交换两元素 6 i ← PARENT(i) // 指向父结点位置 T(n) = θ(lgn) """ val = self[i] assert key <= val, "new key is larger than current key" self[i] = key parent = self.parent while i > 0 and self[parent(i)] > self[i]: self[i], self[parent(i)] = self[parent(i)], self[i] i = parent(i) def insert(self, key): """将key插入A,伪码如下: MIN-HEAP-INSERT(A, key) 1 heap-size[A] ← heap-size[A] + 1 // 对元素个数增加 2 A[heap-size[A]] ← +∞ // 初始新增加元素为+∞ 3 HEAP-DECREASE-KEY(A, heap-size[A], key) // 将新增元素减少到key T(n) = θ(lgn) """ self.append(float('inf')) self.decrease_key(len(self) - 1, key) if __name__ == '__main__': import random keys = range(10) random.shuffle(keys) print(keys) queue = MinPriorityQueue() # 插入方式建最小堆 for i in keys: queue.insert(i) print(queue) print('*' * 30) for i in range(len(queue)): val = i % 3 if val == 0: val = queue.extract_min() # 去除并返回最小元素 elif val == 1: val = queue.minimum() # 返回最小元素 else: val = queue[1] - 10 queue.decrease_key(1, val) # queue[1]减少10 print(queue, val) print([queue.extract_min() for i in range(len(queue))])
相关推荐
zhangpan 2020-05-31
Kakoola 2020-05-26
xhao 2020-05-04
容数据服务集结号 2020-02-21
nbfcome 2020-02-21
guan000 2020-02-18
憧憬 2019-12-29
JakobHu 2019-12-06
huhui0 2009-06-23
liym 2019-07-31
swency 2010-08-02
zestroly 2011-01-10
ding0 2019-06-30
lickylin 2019-06-30
newbird0 2019-06-29
小方哥哥 2019-06-28
CXsilent 2019-06-28
好好学习天天 2019-06-27
飞奔的熊猫 2019-06-26