[Hadoop] Hive 性能+特性
[Hadoop] Hive 性能
利用Hive Bulk Inport数据到Hbase http://wiki.apache.org/hadoop/Hive/HBaseBulkLoad
生成测试数据
/home/bmb/jdk1.6.0_16/bin/java -cp examples.zip examples.CreateLogFile 1 1000000
/home/bmb/jdk1.6.0_16/bin/java -cp examples.zip examples.CreateLogFile 1000000 2000000
/home/bmb/jdk1.6.0_16/bin/java -cp examples.zip examples.CreateLogFile 2000000 3000000
创建性能测试表
不带压缩的测试表
drop table p_test_data;
CREATE TABLE p_test_data (
id INT,
content STRING,
time STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入数据
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/test_0_1000000.log' INTO TABLE p_test_data;
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/test_1000000_2000000.log' INTO TABLE p_test_data;
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/test_2000000_3000000.log' INTO TABLE p_test_data;
set mapred.reduce.tasks=1;
select count(a.id) from p_test_data a;
Time taken: 27.265 seconds
select a.id,a.content,a.time from p_test_data a where a.id=1;
Time taken: 18.086 seconds
INSERT OVERWRITE DIRECTORY '/tmp/p_test_data_out'
select a.time,count(1) from p_test_data a group by a.time;
Time taken: 32.899 seconds
带压缩的测试表
(框架检测到输入文件的后缀是.gz和.lzo,就会使用对应的CompressionCodec自动解压缩这些文件 )
drop table p_com_test_data;
CREATE TABLE p_com_test_data (
id INT,
content STRING,
time STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
tar cvf 0_100W.tar test_0_1000000.log
gzip 0_100W.tar
tar cvf 100_200W.tar test_1000000_2000000.log
gzip 100_200W.tar
tar cvf 200_300W.tar test_2000000_3000000.log
gzip 200_300W.tar
导入数据
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/0_100W.tar.gz' INTO TABLE p_com_test_data;
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/100_200W.tar.gz' INTO TABLE p_com_test_data;
LOAD DATA LOCAL INPATH '/home/iic/hadoop-0.20.2/200_300W.tar.gz' INTO TABLE p_com_test_data;
select a.time,count(1) from p_com_test_data a group by a.time;
Time taken: 26.31 seconds
此例子是针对小量文件的压缩和不压缩的性能测试,虽然不代表最终结果,但是从本次测试可以发现,压缩的效率更高,
可能是因为压缩文件是作为整个Block给Map,减少了InputSplit的检测和分析。