3分钟干货之迭代算法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,在解决问题时总是重复利用一种方法。与迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法,功能都比较类似。

迭代算法基础

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

在使用迭代算法解决问题时,需要做好如下3个方面的工作。

(1)确定迭代变量
在可以使用迭代算法解决的问题中,至少存在一个迭代变量,即直接或间接地不断由旧值递推出新值的变量。

(2)建立迭代关系式
迭代关系式是指如何从变量的前一个值推出其下一个值的公式或关系。通常可以使用递推或倒推的方法来建立迭代关系式,迭代关系式的建立是解决迭代问题的关键。

(3)对迭代过程进行控制
在编写迭代程序时,必须确定在什么时候结束迭代过程,不能让迭代过程无休止地重复执行下去。通常可分为如下两种情况来控制迭代过程:

① 所需的迭代次数是个确定的值,可以计算出来,可以构建一个固定次数的循环来实现对迭代过程的控制;

② 所需的迭代次数无法确定,需要进一步分析出用来结束迭代过程的条件。

相关推荐