Spark集群搭建 & spark-shell & Master HA

一、环境

CentOS-6.8-x86_64/jdk1.8/spark-2.3.1-bin-hadoop2.6.tgz

二、组建方案:

-----1--------2--------3-------4-------5--------
-----N1-----N2-------D-------D------D--------
-----R1------R2-------Z-------Z-------Z--------
-----Hi-------Hi---------------------------------
-----M-------W-------W------------------------

N:namenode/D:datanode/Z:zookeeper/R:resourcemanager/Hi:hive/M:spark master/W:spark slave

 三、环境变量 

/etc/profile
export JAVA_HOME=/usr/local/runtime/jdk
export HADOOP_PREFIX=/usr/local/runtime/hadoop
export HIVE_HOME=/usr/local/runtime/hive
export HBASE_HOME=/usr/local/runtime/hbase
export ZOOKEEPER_HOME=/usr/local/runtime/zookeeper
export JRE_HOME=/usr/local/runtime/jdk/jre
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export PATH=$PATH:$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$HADOOP_PREFIX/bin:$HIVE_HOME/bin:$HBASE_HOME/bin:$HADOOP_PREFIX/sbin
/etc/hosts
192.168.2.71  spark1
192.168.2.72  spark2
192.168.2.73  spark3
192.168.2.74  spark4
192.168.2.75  spark5

四、搭建集群

1、standlone方式

步骤一:解压文件 改名
           tar -zxvf spark-2.3.1-bin-hadoop2.6.tgz -C /usr/local/runtime
           mv spark-2.3.1-bin-hadoop2.6          spark-2.3.1
步骤二:修改配置文件

 1、修改slaves
          cd /usr/local/spark-1.6.0/conf 
          cp slaves.template slaves 
          vi slaves
         ----------------------------
           spark1
           spark2
         ----------------------------

2、修改 spark-config.sh 设置java_home

         cd  spark-2.3.1/sbin
         export JAVA_HOME=/usr/local/runtime/jdk

3、spark-env.sh
                 mv spark-env.sh.template spark-env.sh 
                 vi spark-env.sh

	#SPARK_MASTER_HOST:master的HOSTNAME
	export SPARK_MASTER_HOST=spark1
	#SPARK_MASTER_PORT:提交任务的端口,默认是7077
	export SPARK_MASTER_PORT=7077
	#SPARK_WORKER_CORES:每个worker从节点能够支配的core的个数
	export SPARK_WORKER_CORES=2
	#SPARK_WORKER_MEMORY:每个worker从节点能够支配的内存数
	export SPARK_WORKER_MEMORY=3g
	#SPARK_MASTER_WEBUI_PORT:sparkwebUI端口 默认8080 或者修改spark-master.sh
	export SPARK_MASTER_WEBUI_PORT=8080

步骤三、分发spark到另外两个节点
            scp -r spark-1.6.0 root@spark2:`pwd`
            scp -r spark-1.6.0 root@spark3:`pwd`

步骤四:启动集群(注意与hadoop冲突,带路径使用)

             spark-1.6.0/sbin/start-all.sh

步骤五:关闭集群
             spark-1.6.0/sbin/stop-all.sh

步骤六:执行代码
            (非集群模式)
spark-2.3.1/bin/spark-submit --master spark://spark1:7077 --class we.we.WordCount c.jar 10000
             (集群模式)
spark-2.3.1/bin/spark-submit --master spark://spark1:7077 --deploy-mode cluster--class we.we.WordCount c.jar 10000
步骤七:客户端执行方式
             复制现有配置的spark-2.3.1(原配置不做修改)及环境到新机
            (非集群模式)
spark-2.3.1/bin/spark-submit --master spark://spark1:7077 --class we.we.WordCount  c.jar 10000
             (集群模式)
spark-2.3.1/bin/spark-submit --master spark://spark1:7077 --deploy-mode cluster  --class we.we.WordCount c.jar 10000

 -----------------------------------------

注意所有“集群提交模式”:必须保证集群每台机器都有jar文件,否则报错java.nio.file.NoSuchFileException:  c.jar。对于jar文件存放在hdfs中的不会报错

master界面:端口默认8080/ job界面,端口是4040:

----------------------------------------------

2、Yarn方式

注意:如果数据来源于HDFS或者需要使用YARN提交任务,那么spark需要依赖HDFS,否则两者没有联系

      如果不使用客户端方式提交hdfs或yarn,则在集群每台机器上做以下配置,也可以(根据具体情况配置)

一、在spark在客户端中----提交hdfs文件----或----使用yarn提交任务----的配置:    

vi  spark-2.3.1/conf/ spark-env.sh
添加配置
            export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
       
提交任务:
spark-2.3.1/bin/spark-submit --master yarn --class we.we.WordCount  c.jar 10000

二、使用spark-shell 

  SparkShell是Spark自带的一个快速原型开发工具,也可以说是Spark的scala REPL(Read-Eval-Print-Loop),即交互式shell。支持使用scala语言来进行Spark的交互式编程。

1、运行

步骤一:启动standalone集群和HDFS集群(spark1上HDFS伪分布),之后启动spark-shell
/usr/local/spark-1.6.0/bin/spark-shell --master spark://spark1:7077
 步骤二:运行wordcount 
scala>sc.textFile("hdfs://spark1:8082/spark/test/wc.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).foreach(println)

 2、配置historyServer

步骤一:
         临时配置,对本次提交的应用程序起作用
[root@spark04 bin]#  spark-1.6.0/bin/spark-shell --master spark://spark1:7077 --name myapp1 --conf spark.eventLog.enabled=true --conf spark.eventLog.dir=hdfs://spark1:8082/spark/test
注意:停止程序,在Web UI中Completed Applications对应的ApplicationID中能查看history

 步骤二:
          spark-default.conf配置文件中配置HistoryServer,对所有提交的Application都起作用
如果想看历史事件日志,可以新搭建一个HistoryServer专门用来看历史应用日志,跟当前的集群没有关系,

这里我们新启动客户端spark4节点,进入../spark-1.6.0/conf/spark-defaults.conf最后加入:

//开启记录事件日志的功能
spark.eventLog.enabled true
//设置事件日志存储的目录
spark.eventLog.dir hdfs://PCS102:9820/spark/test
//设置HistoryServer加载事件日志的位置  恢复查看
spark.history.fs.logDirectory hdfs://PCS102:9820/spark/test
//日志优化选项,压缩日志
spark.eventLog.compress true

相关推荐