pandas模块

pandas

引入约定

>>> from pandas import Series,DataFrame
>>> import pandas as pd

Series

类似于一维数组的对象,由一组数据和相关的数据标签(索引)组成

>>> obj=Series([4,7,-5,3])
>>> obj
0    4
1    7
2   -5
3    3
dtype: int64

通过values和index属性获取其数组表示形式和索引对象

>>> obj.values
array([ 4,  7, -5,  3])
>>> obj.index
RangeIndex(start=0, stop=4, step=1)

对各个数据点进行标记的索引

>>> obj2=Series([4,7,-5,3],index=[‘d‘,‘b‘,‘a‘,‘c‘])
>>> obj2
d    4
b    7
a   -5
c    3
dtype: int64

>>> obj2.index
Index([u‘d‘, u‘b‘, u‘a‘, u‘c‘], dtype=‘object‘)

与普通Numpy数组相比,可以通过索引的方式选取Series中的单个或一组值

>>> obj2[‘a‘]
-5

>>> obj2[[‘a‘,‘b‘,‘c‘]]
a   -5
b    7
c    3
dtype: int64

将Series看成一个定长的有序字典

>>> ‘b‘ in obj2
True
>>> ‘e‘ in obj2
False

如果数据被存放在一个python字典中,可以直接通过这个字典创建Series

>>> sdata={‘Ohio‘:35000,‘Texas‘:71000,‘Oregon‘:16000,‘Utah‘:5000}
>>> obj3=Series(sdata)
>>> obj3
Ohio      35000
Oregon    16000
Texas     71000
Utah       500

如果只传入一个字典,则结果Series中的索引就是原字典的键

sdate中跟states索引相匹配,按照传入的states顺序进行排列

>>> states=[‘California‘,‘Ohio‘,‘Oregon‘,‘Texas‘]
>>> obj4=Series(sdata,index=states)
>>> obj4
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64

pandas的isnull和notnull函数用于检查缺失数据

>>> pd.isnull(obj4)
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

Series也有类似的实例方法

>>> obj4.isnull()
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

Series最重要的功能是---算术运算中会自动对齐不同索引的数据;数据对齐功能

>>> obj3+obj4
California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
dtype: float64

Series对象本身及其索引都有一个name属性

>>> obj4.name=‘population‘
>>> obj4.index.name=‘state‘
>>> obj4
state
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
Name: population, dtype: float64

Series的索引可以通过赋值的方式就地修改

>>> obj.index=[‘Bob‘,‘Steve‘,‘Jeff‘,‘Ryan‘]
>>> obj
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame

构建DataFrame,直接传入一个由等长列表或Numpy数组组成的字典

自动加上索引,且全部列会被有序排列

>>> data={‘state‘:[‘Ohio‘,‘Ohio‘,‘Ohio‘,‘Nevada‘,‘Nevada‘],‘year‘:[2000,2001,2002,2001,2002],‘pop‘:[1.5,1.7,3.6,2.4,2.9]}
>>> frame=DataFrame(data)
>>> frame
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列

>>> DataFrame(data,columns=[‘year‘,‘state‘,‘pop‘])
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

跟Series一样,如果传入的列在数据中找不到,就会产生NA值

>>> frame2=DataFrame(data,columns=[‘year‘,‘state‘,‘pop‘,‘debt‘],index=[‘one‘,‘two‘,‘three‘,‘four‘,‘five‘])
>>> frame2
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

>>> frame2.columns
Index([u‘year‘, u‘state‘, u‘pop‘, u‘debt‘], dtype=‘object‘)

通过类似字典标记的方式或属性,可以将DataFrame的列获取为一个Series,拥有原DataFrame相同的索引,其name属性已经被相应地设置好

>>> frame2[‘state‘]
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
Name: state, dtype: object

>>> frame2.year
one      2000
two      2001
three    2002
four     2001
five     2002
Name: year, dtype: int64

行也可以通过位置或名称的方式进行获取,比如用索引字段ix

>>> frame2.ix[‘three‘]
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object

列可以通过赋值的方式进行修改

>>> frame2[‘debt‘]=16.5

>>> frame2[‘debt‘]=np.arange(5.)
>>> frame2
       year   state  pop  debt
one    2000    Ohio  1.5   0.0
two    2001    Ohio  1.7   1.0
three  2002    Ohio  3.6   2.0
four   2001  Nevada  2.4   3.0
five   2002  Nevada  2.9   4.0

将列表或数组赋值给某个列时,长度必须跟DataFrame的长度相匹配

如果赋值的是一个Series,就会精确匹配DataFrame的索引,所有的空位都将被填上缺省值

>>> val=Series([-1.2,-1.5,-1.7],index=[‘two‘,‘four‘,‘five‘])
>>> frame2[‘debt‘]=val
>>> frame2
       year   state  pop  debt
one    2000    Ohio  1.5   NaN
two    2001    Ohio  1.7  -1.2
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4  -1.5
five   2002  Nevada  2.9  -1.7

为不存在的列赋值会创建出一个新列

>>> frame2[‘eastern‘]=frame2.state == ‘Ohio‘
>>> frame2
       year   state  pop  debt eastern
one    2000    Ohio  1.5   NaN    True
two    2001    Ohio  1.7  -1.2    True
three  2002    Ohio  3.6   NaN    True
four   2001  Nevada  2.4  -1.5   False
five   2002  Nevada  2.9  -1.7   False

关键字del用于删除列

>>> del frame2[‘eastern‘]
>>> frame2
       year   state  pop  debt
one    2000    Ohio  1.5   NaN
two    2001    Ohio  1.7  -1.2
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4  -1.5
five   2002  Nevada  2.9  -1.7

通过索引方式返回的列只是相应数据的视图而已,并不是副本。对返回的Series所做的任何就地修改全部会反映到源DataFrame上

另一个常见的数据形式是嵌套字典(字典的字典)

外层字典的键作为列,内层键则作为行索引

>>> pop={‘Nevada‘:{2001:2.4,2002:2.9},
...     ‘Ohio‘:{2000:1.5,2001:1.7,2002:3.6}}
>>> frame3=DataFrame(pop)
>>> frame3
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6

对结果进行转置

>>> frame3.T
        2000  2001  2002
Nevada   NaN   2.4   2.9
Ohio     1.5   1.7   3.6

内层字典的键会被合并,排序以形成最终的索引

>>> DataFrame(pop,index=[2001,2002,2003])
      Nevada  Ohio
2001     2.4   1.7
2002     2.9   3.6
2003     NaN   NaN

设置DataFrame的index和columns的name属性

>>> frame3.index.name=‘year‘;frame3.columns.name=‘state‘
>>> frame3
state  Nevada  Ohio
year
2000      NaN   1.5
2001      2.4   1.7
2002      2.9   3.6

跟Series一样,values属性也会以二维ndarray的形式返回DataFrame中的数据

>>> frame3.values
array([[ nan,  1.5],
       [ 2.4,  1.7],
       [ 2.9,  3.6]])

如果DataFrame各列的数据类型不同,则值数组的数据类型就会选用兼容所有列的数据的数据类型

>>> frame2.values
array([[2000, ‘Ohio‘, 1.5, nan],
       [2001, ‘Ohio‘, 1.7, -1.2],
       [2002, ‘Ohio‘, 3.6, nan],
       [2001, ‘Nevada‘, 2.4, -1.5],
       [2002, ‘Nevada‘, 2.9, -1.7]], dtype=object)

索引对象

pandas数据模型的重要组成部分

负责管理轴标签和其它元数据。构建Series或DataFrame时,所用到的任何数组或其它序列的标签都会被转换成一个Index

>>> obj=Series(range(3),index=[‘a‘,‘b‘,‘c‘])
>>> index=obj.index
>>> index
Index([u‘a‘, u‘b‘, u‘c‘], dtype=‘object‘)

Index对象是不可修改的(immutable),使index对象在多个数据结构之间安全共享

重新索引

>>> obj=Series([4.5,7.2,-5.3,3.6],index=[‘d‘,‘b‘,‘a‘,‘c‘])
>>> obj
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64

调用该Series的reindex将会根据新索引进行重排,索引值不存在引入缺失值

>>> obj2=obj.reindex([‘a‘,‘b‘,‘c‘,‘d‘,‘e‘])
>>> obj2
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64

设定默认的缺失值

>>> obj2=obj.reindex([‘a‘,‘b‘,‘c‘,‘d‘,‘e‘],fill_value=0)
>>> obj2
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0
dtype: float64

对于时间序列这样的有序数据,重新索引时可以需要做一些插值处理

method选项

>>> obj3=Series([‘blue‘,‘purple‘,‘yellow‘],index=[0,2,4])

reindex的插值method选项

ffill或pad;前向填充或搬运值

>>> obj3.reindex(range(6),method=‘ffill‘)
     blue
     blue
   purple
   purple
   yellow
   yellow
dtype: object

对于DataFrame,reindex可以修改行索引,列,或两个都修改。如果仅传入一个序列,则会重新索引行

>>> frame=DataFrame(np.arange(9).reshape((3,3)),index=[‘a‘,‘c‘,‘d‘],columns=[‘Ohio‘,‘Texas‘,‘California‘])
>>> frame
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8


>>> frame2=frame.reindex([‘a‘,‘b‘,‘c‘,‘d‘])
>>> frame2
   Ohio  Texas  California
a   0.0    1.0         2.0
b   NaN    NaN         NaN
c   3.0    4.0         5.0
d   6.0    7.0         8.0

使用columns关键字即可重新索引列

>>> states=[‘Texas‘,‘Utah‘,‘California‘]
>>> frame.reindex(columns=states)
   Texas  Utah  California
a      1   NaN           2
c      4   NaN           5
d      7   NaN           8

可以同时对行和列进行重新索引,而插值则只能按行应用

>>> frame.reindex(index=[‘a‘,‘b‘,‘c‘,‘d‘],method=‘ffill‘,columns=states)
   Texas  Utah  California
a      1   NaN           2
b      1   NaN           2
c      4   NaN           5
d      7   NaN           8

利用ix的标签索引功能,重新索引任务可以变得更简洁

>>> frame.ix[[‘a‘,‘b‘,‘c‘,‘d‘],states]
   Texas  Utah  California
a    1.0   NaN         2.0
b    NaN   NaN         NaN
c    4.0   NaN         5.0
d    7.0   NaN         8.0

reindex函数的参数

index       索引的新序列
method      插值填充方式
fill_value  在重新索引的过程中,需要引入缺失值时使用的替代值
limit       前向或后向填充时的最大填充量
level       在MultiIndex的指定级别上匹配简单索引,否则选取其子集
copy        默认为true,无论如何都复制

丢弃指定轴上的项

>>> obj=Series(np.arange(5.),index=[‘a‘,‘b‘,‘c‘,‘d‘,‘e‘])
>>> obj
a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

>>> new_obj=obj.drop(‘c‘)
>>> new_obj
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64

对于DataFrame,可以删除任意轴上的索引值

>>> data=DataFrame(np.arange(16).reshape((4,4)),index=[‘Ohio‘,‘Colorado‘,‘Utah‘,‘New York‘],columns=[‘one‘,‘two‘,‘three‘,‘four‘])
>>> data
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15 


>>> data.drop([‘Colorado‘,‘Ohio‘])
          one  two  three  four
Utah        8    9     10    11
New York   12   13     14    15


>>> data.drop(‘two‘,axis=1)
          one  three  four
Ohio        0      2     3
Colorado    4      6     7
Utah        8     10    11
New York   12     14    15

>>> data.drop([‘two‘,‘four‘],axis=1)
          one  three
Ohio        0      2
Colorado    4      6
Utah        8     10
New York   12     14

索引,选取和过滤

类似于Numpy数组的索引,只不过Series的索引值不只是整数

Series利用标签的切片运算与普通的python切片运算不同,其末端是包含的

>>> data=DataFrame(np.arange(16).reshape((4,4)),index=[‘Ohio‘,‘Colorado‘,‘Utah‘,‘New York‘],columns=[‘one‘,‘two‘,‘three‘,‘four‘])
>>> data
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

DataFrame的切片

>>> data[:2]
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7



>>> data<5
            one    two  three   four
Ohio       True   True   True   True
Colorado   True  False  False  False
Utah      False  False  False  False
New York  False  False  False  False

>>> data[data<5]=0
>>> data
          one  two  three  four
Ohio        0    0      0     0
Colorado    0    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

>>> data.ix[‘Colorado‘,[‘two‘,‘three‘]]
two      5
three    6
Name: Colorado, dtype: int64

>>> data.ix[[‘Colorado‘,‘Utah‘],[3,0,1]]
          four  one  two
Colorado     7    0    5
Utah        11    8    9

>>> data.ix[2]
one       8
two       9
three    10
four     11
Name: Utah, dtype: int64

>>> data.ix[:‘Utah‘,‘two‘]
Ohio        0
Colorado    5
Utah        9
Name: two, dtype: int64

算术对齐和数据对齐

自动的数据对齐操作在不重叠的索引处引入NA值

对于DataFrame,对齐操作会同时发生在行和列上

使用add方法,传入加数以及一个fill_value参数:obj.add(obj2,fill_value=0)

DataFrame和Series之间的运算

>>> arr=np.arange(12.).reshape((3,4))
>>> arr
array([[  0.,   1.,   2.,   3.],
       [  4.,   5.,   6.,   7.],
       [  8.,   9.,  10.,  11.]])
>>> arr[0]
array([ 0.,  1.,  2.,  3.])
>>> arr-arr[0]
array([[ 0.,  0.,  0.,  0.],
       [ 4.,  4.,  4.,  4.],
       [ 8.,  8.,  8.,  8.]])

这叫做广播(broadcasting)

>>> frame=DataFrame(np.arange(12.).reshape((4,3)),columns=list(‘bde‘),index=[‘Utah‘,‘Ohio‘,‘Texas‘,‘Oregon‘])
>>> series=frame.ix[0]
>>> frame
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0
>>> series
b    0.0
d    1.0
e    2.0
Name: Utah, dtype: float64

默认情况下,DataFrame和Series之间的算术运算会将Series的索引匹配到DataFrame的行,然后沿着行一直向下广播

>>> frame-series
          b    d    e
Utah    0.0  0.0  0.0
Ohio    3.0  3.0  3.0
Texas   6.0  6.0  6.0
Oregon  9.0  9.0  9.0

如果某个索引值在DataFrame的列或Series的索引中找不到,则参与运算的两个对象被重新索引以形成并集

>>> series2=Series(range(3),index=[‘b‘,‘e‘,‘f‘])
>>> series2
b    0
e    1
f    2
dtype: int64

>>> frame+series2
          b   d     e   f
Utah    0.0 NaN   3.0 NaN
Ohio    3.0 NaN   6.0 NaN
Texas   6.0 NaN   9.0 NaN
Oregon  9.0 NaN  12.0 NaN

匹配行且在列上广播,则必须使用算术运算方法

>>> frame.sub(series3,axis=0)
          b    d    e
Utah   -1.0  0.0  1.0
Ohio   -1.0  0.0  1.0
Texas  -1.0  0.0  1.0
Oregon -1.0  0.0  1.0

函数应用和映射

许多最为常见的数组统计功能都被实现成DataFrame的方法

>>> frame=DataFrame(np.random.randn(4,3),columns=list(‘bde‘),index=[‘Utah‘,‘Ohio‘,‘Texas‘,‘Oregon‘])
>>> frame
               b         d         e
Utah   -1.120701 -0.772813 -1.183221
Ohio   -0.690566  0.610834  0.382371
Texas   0.287303 -0.001705 -1.055101
Oregon  1.149945  1.056177 -0.178909

>>> deff(x):
...     return Series([x.min(),x.max()],index=[‘min‘,‘max‘])
... 
>>> frame.apply(f)
            b         d         e
min -1.120701 -0.772813 -1.183221
max  1.149945  1.056177  0.382371

frame中各个浮点值的格式化字符串

>>> format=lambda x:‘%.2f‘ % x
>>> frame.applymap(format)
            b      d      e
Utah    -1.12  -0.77  -1.18
Ohio    -0.69   0.61   0.38
Texas    0.29  -0.00  -1.06
Oregon   1.15   1.06  -0.18

Series有一个用于元素级函数的map方法

>>> frame[‘e‘].map(format)
Utah      -1.18
Ohio       0.38
Texas     -1.06
Oregon    -0.18
Name: e, dtype: object

排序和排名

>>> obj=Series(range(4),index=[‘d‘,‘a‘,‘b‘,‘c‘])
>>> obj.sort_index()
a    1
b    2
c    3
d    0
dtype: int64

对于DataFrame,则可以根据任意一个轴上的索引进行排序

数据默认是按升序排列的,但也可以降序排列

>>> frame=DataFrame(np.arange(8).reshape((2,4)),index=[‘three‘,‘one‘],columns=[‘d‘,‘a‘,‘b‘,‘c‘])
>>> frame.sort_index(axis=1)
       a  b  c  d
three  1  2  3  0
one    5  6  7  4
>>> frame.sort_index(axis=1,ascending=False)
       d  c  b  a
three  0  3  2  1
one    4  7  6  5

按值对Series进行排序,可使用其order方法

>>> obj=Series([4,7,-3,2])
>>> obj.order()

>>> obj.sort_values()
2   -3
3    2
0    4
1    7
dtype: int64

在排序时,任何缺失值默认都会被放到Series的末尾

>>> frame=DataFrame({‘b‘:[4,7,-3,2],‘a‘:[0,1,0,1]})
>>> frame
   a  b
0  0  4
1  1  7
2  0 -3
3  1  2

>>> frame.sort_values(by=‘b‘)
   a  b
2  0 -3
3  1  2
0  0  4
1  1  7

排名

根据某种规则破坏平级关系

>>> obj=Series([7,-5,7,4,2,0,4])
>>> obj
   7
  -5
   7
   4
   2
   0
   4
dtype: int64
>>> obj.rank()
   6.5
   1.0
   6.5
   4.5
   3.0
   2.0
   4.5
dtype: float64

排名时用于破坏平级关系的method选项

average 默认,在相等分组中,为各个值分配平均排名
min     使用整个分组的最小排名
max     使用整个分组的最大排名
first   按值在原始数据中的出现顺序分配排名

带有重复值的轴索引

许多pandas函数(eg:reindex)都要求标签唯一,但并不是强制性

索引的is_unique属性

>>> obj.index.is_unique
False

某个索引对应多个值,则返回一个Series

>>> obj[‘a‘]
a    0
a    1
dtype: int64

对应单值,返回一个标量值

>>> obj[‘c‘]
4

汇总和计算描述统计

sum求和,传入axis=1将会按行进行求和运算

NA值会自动被排除,除非整个切片(行或列)都是NA

通过skipna选项可以禁用该功能,df.mean(axis=1,skipna=False)

describe,用于一次性产生多个汇总统计

相关系数与协方差

唯一值,值计数以及成员资格

可以从一维Series的值中抽取信息

>>> obj=Series([‘c‘,‘a‘,‘d‘,‘a‘,‘a‘,‘b‘,‘b‘,‘c‘,‘c‘])
>>> uniques=obj.unique()
>>> uniques
array([‘c‘, ‘a‘, ‘d‘, ‘b‘], dtype=object)

计算一个Series中各值出现的频率

>>> obj.value_counts()
c    3
a    3
b    2
d    1
dtype: int64

矢量化集合的成员资格,可用于选取Series中或DataFrame列中数据的子集

>>> mask=obj.isin([‘b‘,‘c‘])
>>> mask
0     True
1    False
2    False
3    False
4    False
5     True
6     True
7     True
8     True
dtype: bool

>>> obj[mask]
0    c
5    b
6    b
7    c
8    c
dtype: object

处理缺失数据

missing data在大部分数据分析应用中都很常见,pandas的设计目标是让缺失数据的处理任务尽量轻松

python内置的None值也会被当做NA处理

滤除缺失数据

>>> from numpy import nan as NA
>>> data=Series([1,NA,3.5,NA,7])
>>> data
0    1.0
1    NaN
2    3.5
3    NaN
4    7.0
dtype: float64
>>> data.dropna()
0    1.0
2    3.5
4    7.0
dtype: float64

通过布尔型索引

>>> data[data.notnull()]
0    1.0
2    3.5
4    7.0
dtype: float64

对于DataFrame,dropna默认丢弃任何含有缺失值的行

传入how=‘all‘将会丢弃全为NA的那些行

>>> data=DataFrame([[1.,6.5,3.],[1.,NA,NA],[NA,NA,NA],[NA,6.5,3.]])
>>> data
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0
>>> data.dropna(how=‘all‘)
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
3  NaN  6.5  3.0


>>> data[4]=NA
>>> data
     0    1    2   4
0  1.0  6.5  3.0 NaN
1  1.0  NaN  NaN NaN
2  NaN  NaN  NaN NaN
3  NaN  6.5  3.0 NaN

>>> data.dropna(axis=1,how=‘all‘)
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0

时间序列数据,只想留下一部分观测数据

>>> df=DataFrame(np.random.randn(7,3))
>>> df
          0         1         2
0  1.367974 -0.556556  0.679336
1 -0.480919 -1.535185 -0.299710
2  0.230583  0.140626  0.604209
3  0.437830 -0.467286 -0.859989
4 -0.254706 -0.227431 -0.956299
5  0.966204 -2.010860 -0.010693
6 -0.673721  1.497827 -0.257273

>>> df.ix[:4,1]=NA
>>> df.ix[:2,2]

>>> df
          0         1         2
0  1.367974       NaN       NaN
1 -0.480919       NaN       NaN
2  0.230583       NaN       NaN
3  0.437830       NaN -0.859989
4 -0.254706       NaN -0.956299
5  0.966204 -2.010860 -0.010693
6 -0.673721  1.497827 -0.257273

一行中至少有3个非NA值将其保留

>>> df.dropna(thresh=3)
        1         2
 0.966204 -2.010860 -0.010693
-0.673721  1.497827 -0.257273

填充缺失数据

fillna方法是最主要的函数

>>> df.fillna(0)
        1         2
 1.367974  0.000000  0.000000
-0.480919  0.000000  0.000000
 0.230583  0.000000  0.000000
 0.437830  0.000000 -0.859989
-0.254706  0.000000 -0.956299
 0.966204 -2.010860 -0.010693
-0.673721  1.497827 -0.257273

一个字典调用fillna,就可以实现对不同列填充不同的值

>>> df.fillna({1:0.5,3:-1})
        1         2
 1.367974  0.500000       NaN
-0.480919  0.500000       NaN
 0.230583  0.500000       NaN
 0.437830  0.500000 -0.859989
-0.254706  0.500000 -0.956299
 0.966204 -2.010860 -0.010693
-0.673721  1.497827 -0.257273

fillna默认会返回新对象,但也可以对现有对象进行就地修改

返回被填充对象的引用

>>> _=df.fillna(0,inplace=True)
>>> df
        1         2
 1.367974  0.000000  0.000000
-0.480919  0.000000  0.000000
 0.230583  0.000000  0.000000
 0.437830  0.000000 -0.859989
-0.254706  0.000000 -0.956299
 0.966204 -2.010860 -0.010693
-0.673721  1.497827 -0.257273

对reindex有效的那些插值方法也可以用fillna

>>> df=DataFrame(np.random.randn(6,3))
>>> df.ix[2:,1]=NA;df.ix[4:,2]=NA
>>> df
          0         1         2
0  0.647866  0.891312 -0.211922
1 -1.455856 -0.629213 -1.043685
2  2.078467       NaN -0.067846
3 -0.223047       NaN  0.513800
4  0.306559       NaN       NaN
5  0.404265       NaN       NaN

填充最靠近行的数值填充,列行为

>>> df.fillna(method=‘ffill‘)
        1         2
 0.647866  0.891312 -0.211922
-1.455856 -0.629213 -1.043685
 2.078467 -0.629213 -0.067846
-0.223047 -0.629213  0.513800
 0.306559 -0.629213  0.513800
 0.404265 -0.629213  0.513800

>>> df.fillna(method=‘ffill‘,limit=2)
        1         2
 0.647866  0.891312 -0.211922
-1.455856 -0.629213 -1.043685
 2.078467 -0.629213 -0.067846
-0.223047 -0.629213  0.513800
 0.306559       NaN  0.513800
 0.404265       NaN  0.513800

层次化索引

hierachical indexing

一个轴上拥有多个(两个以上)索引级别

>>> data=Series(np.random.randn(10),index=[[‘a‘,‘a‘,‘a‘,‘b‘,‘b‘,‘b‘,‘c‘,‘c‘,‘d‘,‘d‘],[1,2,3,1,2,3,1,2,2,3]])
>>> data
a  1   -0.521370
   2    0.658209
   3    0.841101
b  1    0.354237
   2   -0.426983
   3    0.835357
c  1   -0.246308
   2    0.709859
d  2   -1.215098
   3    0.400793
dtype: float64

这就是带有MultiIndex索引的Series的格式化输出形式

>>> data.index
MultiIndex(levels=[[u‘a‘, u‘b‘, u‘c‘, u‘d‘], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]])


>>> data[‘b‘]
1    0.354237
2   -0.426983
3    0.835357
dtype: float64

内层进行选取

>>> data[:,2]
a    0.658209
b   -0.426983
c    0.709859
d   -1.215098
dtype: float64

层次化索引在数据重塑和基于分组的操作(如透视表生成)扮演重要的角色

>>> data.unstack()
          1         2         3
a -0.521370  0.658209  0.841101
b  0.354237 -0.426983  0.835357
c -0.246308  0.709859       NaN
d       NaN -1.215098  0.400793

unstack的逆运算是stack

对于DataFrame,每条轴都可以有分层索引

>>> frame=DataFrame(np.arange(12).reshape((4,3)),index=[[‘a‘,‘a‘,‘b‘,‘b‘],[1,2,1,2]],columns=[[‘Ohio‘,‘Ohio‘,‘Colorado‘],[‘Green‘,‘Red‘,‘Green‘]])
>>> frame
     Ohio     Colorado
    Green Red    Green
a 1     0   1        2
  2     3   4        5
b 1     6   7        8
  2     9  10       11

各层都可以有名字(可以是字符串,也可以是别的python对象)

>>> frame.index.names=[‘key1‘,‘key2‘]
>>> frame
           Ohio     Colorado
          Green Red    Green
key1 key2 
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11


>>> frame.columns.names=[‘state‘,‘color‘]
>>> frame
state      Ohio     Colorado
color     Green Red    Green
key1 key2
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

有了分部的列索引,可以轻松选取列分组

可以单独创建MultiIndex然后复用

>>> MultiIndex.from_arrays([[‘Ohio‘,‘Ohio‘,‘Colorado‘],[‘Green‘,‘Red‘,‘Green‘]],names=[‘state‘,‘color‘])

重排分级顺序

swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象

>>> frame.swaplevel(‘key1‘,‘key2‘)
state      Ohio     Colorado
color     Green Red    Green
key2 key1
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11

sortlevel则根据单个级别中的值对数据进行排序

>>> frame
state      Ohio     Colorado
color     Green Red    Green
key1 key2 
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

>>> frame.sortlevel(1)
state      Ohio     Colorado
color     Green Red    Green
key1 key2
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11

>>> frame.swaplevel(0,1).sortlevel(0)
state      Ohio     Colorado
color     Green Red    Green
key2 key1
1    a        0   1        2
     b        6   7        8
2    a        3   4        5
     b        9  10       11

在层次化索引的对象上,如果索引是按字典方式从外向内排序,即调用sortlevel(0)或sort_index()的结果,数据选取操作的性能要好的多

根据级别汇总统计

许多对DataFrame和Series的描述和汇总统计都有一个level选项,用于指定在某条轴上求和的级别

>>> frame.sum(level=‘key2‘)
state  Ohio     Colorado
color Green Red    Green
key2
1         6   8       10
2        12  14       16

>>> frame.sum(level=‘color‘,axis=1)
color      Green  Red
key1 key2
a    1         2    1
     2         8    4
b    1        14    7
     2        20   10

使用DataFrame的列

想要将DataFrame的一个或多个列当做行索引来用,或者将行索引当成DataFrame的列

>>> frame=DataFrame({‘a‘:range(7),‘b‘:range(7,0,-1),‘c‘:[‘one‘,‘one‘,‘one‘,‘two‘,‘two‘,‘two‘,‘two‘],‘d‘:[0,1,2,0,1,2,3]})
>>> frame
   a  b    c  d
0  0  7  one  0
1  1  6  one  1
2  2  5  one  2
3  3  4  two  0
4  4  3  two  1
5  5  2  two  2
6  6  1  two  3

set_index()函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame

>>> frame2=frame.set_index([‘c‘,‘d‘])
>>> frame2
       a  b
c   d
one 0  0  7
    1  1  6
    2  2  5
two 0  3  4
    1  4  3
    2  5  2
    3  6  1

默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来

>>> frame.set_index([‘c‘,‘d‘],drop=False)
       a  b    c  d
c   d
one 0  0  7  one  0
    1  1  6  one  1
    2  2  5  one  2
two 0  3  4  two  0
    1  4  3  two  1
    2  5  2  two  2
    3  6  1  two  3

reset_index的功能相反,层次化索引的级别会被转移到列里面

>>> frame2.reset_index()
     c  d  a  b
 one  0  0  7
 one  1  1  6
 one  2  2  5
 two  0  3  4
 two  1  4  3
 two  2  5  2
 two  3  6  1

相关推荐