hadoop 计数器 Counter

0 计数器相当于开车中的仪表盘,用于提醒功能, 计数可以再map阶段,也可以在reduce阶段

1 写法代码:

package counter;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

/**
 * 实现单词计数功能
 * 增加自定义计数器功能
 * 测试文件 hello内容为:
 * hello	you
 * hello	me	me	me
 * @author zm
 *
 * 计数器相当于开车中的仪表盘,用于提醒功能
 */
public class MyWordCounter {

	static String FILE_ROOT = "hdfs://master:9000/";
	static String FILE_INPUT = "hdfs://master:9000/hello";
	static String FILE_OUTPUT = "hdfs://master:9000/out";
	public static void main(String[] args) throws IOException, URISyntaxException, InterruptedException, ClassNotFoundException {
		
		Configuration conf = new Configuration();
		FileSystem fileSystem = FileSystem.get(new URI(FILE_ROOT),conf);
		Path outpath = new Path(FILE_OUTPUT);
		if(fileSystem.exists(outpath)){
			fileSystem.delete(outpath, true);
		}
		
		// 0 定义干活的人
		Job job = new Job(conf);
		// 1.1 告诉干活的人 输入流位置     读取hdfs中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数
		FileInputFormat.setInputPaths(job, FILE_INPUT);
		// 指定如何对输入文件进行格式化,把输入文件每一行解析成键值对
		job.setInputFormatClass(TextInputFormat.class);
		
		//1.2 指定自定义的map类
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		
		//1.3 分区
		job.setNumReduceTasks(1);
		
		//1.4 TODO 排序、分组    目前按照默认方式执行
		//1.5 TODO 规约
		
		//2.2 指定自定义reduce类
		job.setReducerClass(MyReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		
		//2.3 指定写出到哪里
		FileOutputFormat.setOutputPath(job, outpath);
		job.setOutputFormatClass(TextOutputFormat.class);
		
		// 让干活的人干活
		job.waitForCompletion(true);
		
	}
	
}

/**
 * 继承mapper 覆盖map方法,hadoop有自己的参数类型
 * 读取hdfs中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数,
 * 这样,对于文件hello而言,调用MyMapper方法map后得到结果:
 * <hello,1>,<you,1>,<hello,1>,<me,1>
 * 方法后,得到结果为: 
 * KEYIN,      行偏移量
 * VALUEIN,    行文本内容(当前行)
 * KEYOUT,     行中出现的单词
 * VALUEOUT    行中出现单词次数,这里固定写为1
 *
 */
class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{

	@Override
	protected void map(LongWritable k1, Text v1, Context context)
			throws IOException, InterruptedException {
	//定义计数器  
		Counter helloCounter = context.getCounter("Sensitive Words", "hello");
		String line = v1.toString();
		if(line.contains("hello")){
			helloCounter.increment(1);
		}
		String[] v1s = v1.toString().split("\t");
		for(String word : v1s){
			context.write(new Text(word), new LongWritable(1));
		}
	}
}

/**
 * <hello,{1,1}>,<me,{1}>,<you,{1}>, 每个分组调用一次 reduce方法
 * 
 * KEYIN,     行中出现单词
 * VALUEIN,   行中出现单词个数
 * KEYOUT,    文件中出现不同单词
 * VALUEOUT   文件中出现不同单词总个数
 */
class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{

	protected void reduce(Text k2, Iterable<LongWritable> v2s, Context ctx)
			throws IOException, InterruptedException {
		long times = 0L;
		for(LongWritable l : v2s){
			times += l.get();
		}
		ctx.write(k2, new LongWritable(times));
	}
	
}

2 运行后计数结果不会写入到hdfs中,仅仅用于一个展示效果,如下:

............
14/12/08 19:05:20 INFO mapred.JobClient: Counters: 20
14/12/08 19:05:20 INFO mapred.JobClient:   Sensitive Words
14/12/08 19:05:20 INFO mapred.JobClient:     hello=2
......

相关推荐