MapReduce直接连接MySQL获取数据
MySQL中数据:
mysql> select * from linuxidc_tbls;
+---------------------+----------------+
| TBL_NAME | TBL_TYPE |
+---------------------+----------------+
| linuxidc_test_table | EXTERNAL_TABLE |
| linuxidc_t | MANAGED_TABLE |
| linuxidc_t1 | MANAGED_TABLE |
| tt | MANAGED_TABLE |
| tab_partition | MANAGED_TABLE |
| linuxidc_hbase_table_1 | MANAGED_TABLE |
| linuxidc_hbase_user_info | MANAGED_TABLE |
| t | EXTERNAL_TABLE |
| linuxidc_jobid | MANAGED_TABLE |
+---------------------+----------------+
9 rows in set (0.01 sec)
mysql> select * from linuxidc_tbls where TBL_NAME like 'linuxidc%' order by TBL_NAME;
+---------------------+----------------+
| TBL_NAME | TBL_TYPE |
+---------------------+----------------+
| linuxidc_hbase_table_1 | MANAGED_TABLE |
| linuxidc_hbase_user_info | MANAGED_TABLE |
| linuxidc_jobid | MANAGED_TABLE |
| linuxidc_t | MANAGED_TABLE |
| linuxidc_t1 | MANAGED_TABLE |
| linuxidc_test_table | EXTERNAL_TABLE |
+---------------------+----------------+
6 rows in set (0.00 sec)
MapReduce程序代码,ConnMysql.java:
package com.linuxidc.study;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.net.URI;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Iterator;
import org.apache.Hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class ConnMysql {
private static Configuration conf = new Configuration();
static {
conf.addResource(new Path("F:/linuxidc-hadoop/hdfs-site.xml"));
conf.addResource(new Path("F:/linuxidc-hadoop/mapred-site.xml"));
conf.addResource(new Path("F:/linuxidc-hadoop/core-site.xml"));
conf.set("mapred.job.tracker", "10.133.103.21:50021");
}
public static class TblsRecord implements Writable, DBWritable {
String tbl_name;
String tbl_type;
public TblsRecord() {
}
@Override
public void write(PreparedStatement statement) throws SQLException {
// TODO Auto-generated method stub
statement.setString(1, this.tbl_name);
statement.setString(2, this.tbl_type);
}
@Override
public void readFields(ResultSet resultSet) throws SQLException {
// TODO Auto-generated method stub
this.tbl_name = resultSet.getString(1);
this.tbl_type = resultSet.getString(2);
}
@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
Text.writeString(out, this.tbl_name);
Text.writeString(out, this.tbl_type);
}
@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
this.tbl_name = Text.readString(in);
this.tbl_type = Text.readString(in);
}
public String toString() {
return new String(this.tbl_name + " " + this.tbl_type);
}
}
public static class ConnMysqlMapper extends Mapper<LongWritable,TblsRecord,Text,Text> {
public void map(LongWritable key,TblsRecord values,Context context)
throws IOException,InterruptedException {
context.write(new Text(values.tbl_name), new Text(values.tbl_type));
}
}
public static class ConnMysqlReducer extends Reducer<Text,Text,Text,Text> {
public void reduce(Text key,Iterable<Text> values,Context context)
throws IOException,InterruptedException {
for(Iterator<Text> itr = values.iterator();itr.hasNext();) {
context.write(key, itr.next());
}
}
}
public static void main(String[] args) throws Exception {
Path output = new Path("/user/linuxidc/output/");
FileSystem fs = FileSystem.get(URI.create(output.toString()), conf);
if (fs.exists(output)) {
fs.delete(output);
}
//mysql的jdbc驱动
DistributedCache.addFileToClassPath(new Path(
"hdfs://hd022-test.nh.sdo.com/user/liuxiaowen/mysql-connector-java-5.1.13-bin.jar"), conf);
DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver",
"jdbc:mysql://10.133.103.22:3306/hive", "hive", "hive");
Job job = new Job(conf,"test mysql connection");
job.setJarByClass(ConnMysql.class);
job.setMapperClass(ConnMysqlMapper.class);
job.setReducerClass(ConnMysqlReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(DBInputFormat.class);
FileOutputFormat.setOutputPath(job, output);
//列名
String[] fields = { "TBL_NAME", "TBL_TYPE" };
//六个参数分别为:
//1.Job;2.Class<? extends DBWritable>
//3.表名;4.where条件
//5.order by语句;6.列名
DBInputFormat.setInput(job, TblsRecord.class,
"linuxidc_tbls", "TBL_NAME like 'linuxidc%'", "TBL_NAME", fields);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
运行结果:
推荐阅读:
相关推荐
通过实现MapReduce计算结果保存到MySql数据库过程,掌握多种方式保存计算结果的技术,加深了对MapReduce的理解;创建maven项目,项目名称hdfs,这里不再说明。红色部分为增加内容: