隐藏彩蛋:你知道python有一个内置的数据库吗?

如果你是软件开发人员,相信你一定知道甚至曾经使用过一个非常轻量级的数据库——SQLite。它几乎拥有作为一个关系数据库所需的所有功能,而且这些有功能都保存在一个文件中。下面是一些官方网站显示可以使用SQLite的场景:

· 嵌入式设备和物联网

· 数据分析

· 数据传输

· 文件归档和/或数据容器

· 内部或临时数据库

· 在演示或测试期间代表企业数据库

· 教育、培训和测试

· 实验性SQL语言扩展

最重要的是,SQLite实际上是作为Python的内置库,换言之,你不需要安装任何服务器端/客户端软件,也不需要让某个东西作为服务运行,只要你用Python导入库并开始编码,就会有一个关系数据库管理系统!

输入与使用

当我们说“内置”时,这意味着你甚至不需要运行pip install来获取库。只需通过以下方式导入:

import sqlite3 as sl

创建到数据库的连接

不要为驱动程序、连接字符串等烦恼。可以创建一个SQLite数据库,并拥有一个简单的连接对象:

con = sl.connect('my-test.db')

运行这行代码之后,我们已经创建了数据库并连接到它。我们要求Python自动连接现有的数据库,因此它不是空的。否则,我们可以使用完全相同的代码连接到现有数据库。

创建表

然后创建一个表:

with con: con.execute(""" CREATE TABLE USER ( id INTEGER NOT NULL PRIMARYKEY AUTOINCREMENT, name TEXT, age INTEGER ); """)

在这个用户表中添加三列。正如你所看到的,SQLite确实是轻量级的,但是它支持常规RDBMS应该具有的所有基本特性,例如数据类型、可为null、主键和自动递增。运行这段代码之后就已经创建了一个表,尽管它什么也不输出。

插入记录

让我们在刚刚创建的USER表中插入一些记录,这也可以证明我们确实创建了它。假设要一次性插入多个条目。Python中的SQLite可以轻松实现这一点。

sql = 'INSERT INTO USER (id, name, age) values(?,?, ?)'data = [ (1, 'Alice', 21), (2, 'Bob', 22), (3, 'Chris', 23)]

我们需要用问号作为占位符来定义SQL语句。然后,创建一些要插入的示例数据。通过连接对象,插入这些示例行。

with con: con.executemany(sql, data)

运行代码之后,没有任何提示,证明我们成功了。

查询表

现在,是时候验证所做的一切了。查询表以获取样本行。

with con: data = con.execute("SELECT *FROM USER WHERE age <= 22") for row in data: print(row)

另外,尽管SQLite是轻量级的,但是作为一个广泛使用的数据库,大多数SQL客户端软件都支持使用它。我使用最多的是DBeaver。

从SQL客户端(DBeaver)连接到SQLite数据库

因为我用的是googlecolab,所以要下载- my-test.db测试数据库文件到本地计算机。在本例中,如果在本地计算机上运行Python,则可以使用SQL客户机直接连接到数据库文件。

在DBeaver中,创建一个新连接并选择SQLite作为DB type。

然后,浏览到DB文件。

现在,可以在数据库上运行任何SQL查询。它与其他常规关系数据库没有什么不同。

与Pandas无缝融合

事实上,作为Python的一个内置特性,SQLite还可以与Pandas数据帧无缝集成。

定义一个数据帧:

df_skill = pd.DataFrame({ 'user_id': [1,1,2,2,3,3,3], 'skill': ['Network Security','Algorithm Development', 'Network Security', 'Java', 'Python', 'Data Science','Machine Learning']})

然后,可以简单地调用数据帧的to_sql()方法将其保存到数据库中。

df_skill.to_sql('SKILL', con)

就这样,我们甚至不需要预先创建表,列的数据类型和长度都会被推断出来。当然,如果你想的话,仍然可以事先定义它。

然后,假设我们要连接表USER和SKILL,并将结果读入Pandas数据框。它也是无缝的。

df = pd.read_sql(''' SELECT s.user_id, u.name, u.age,s.skill FROM USER u LEFT JOIN SKILL s ON u.id= s.user_id''', con)

让我们把结果写到一个名为USER_SKILL的新表中:

df.to_sql('USER_SKILL', con)

然后,还可以使用SQL客户机检索表。

本文介绍了如何使用Python内置库sqlite3在SQLite数据库中创建和操作表。当然,它也支持更新和删除,你可以自己尝试一下。

最重要的是,我们可以轻松地将表从SQLite数据库读入Pandas数据帧,反之亦然。这使我们能够更容易地与轻量级关系数据库进行交互。此外,SQLite没有身份验证,因为一切都需要是轻量级的。