教程 | 用AI生成猫的图片,撸猫人士必备
编译 | 小梁
出品 | AI科技大本营(公众号ID:rgznai100)
【AI科技大本营导读】我们身边总是不乏各种各样的撸猫人士,面对朋友圈一波又一波晒猫的浪潮,作为学生狗和工作狗的我们只有羡慕的份,更流传有“吸猫穷三代,撸猫毁一生?”的名言,今天营长就为广大爱猫人士发放一份福利,看看如何用AI来生成猫的图片?
用DCGAN生成的猫图片示例
领军研究员 Yann Lecun 称生成式对抗网络( Generative Adverserial Networks, GAN )是“过去20年里机器学习中最棒的想法”。因为这种网络结构的出现,我们才能在今天搭建一个可以生成栩栩如生的猫图片的 AI 系统。这是不是很令人振奋?
DCGAN的训练过程
完整代码(Github):
https://gist.github.com/simoninithomas/c7d1e80810ef838330d7dab068d6b26f#file-training-py
如果你使用过 Python、Tensorflow,学习过深度学习、CNNs(卷积神经网络),将对理解代码大有裨益。
▌什么是 DCGAN?
深度卷积生成对抗网络(Deep Convolutional Generative Adverserial Networks,DCGAN)是一种深度学习架构,它会生成和训练集中数据相似的结果。
这一模型用卷积层代替了生成对抗网络(GAN)模型中的全连接层。
为了解释 DCGAN 是如何运行的,我们用艺术专家和冒牌专家来做比喻。
冒牌专家( 即“生成器” )企图模仿梵高的画作生成图片并把它当做真实的梵高作品。
而另一边,艺术专家( 即“分类器” )试图利用它们对梵高画作的了解来识别出赝品( 即生成图片 )。
随着时间推移,艺术专家鉴别赝品的技术不断长进,冒牌专家仿作的能力也不断提高。
如我们所见,DCGANs 由两个互相对抗的深度神经网络组成。
生成器是一个仿造者,生成和真实数据相似的结果。它本身不知道真实数据是什么样,但会从另一个模型的反馈信息中学习和调整。
分类器是一个检测者,通过与真实数据比较来确定伪造数据(即模型生成的图片),但尽力不对真实数据报错。这一部分会为生成器的反向传播服务。
DCGAN工作流程示例
生成器会加入随机噪声向量,生成图片;
这张图片被输入给分类器,和训练集进行比较;
最后分类器返回一个 0(伪造图像)和 1(真实图像)之间的数字。
▌让我们来创建 DCGAN 吧!
现在,我们可以准备创建AI了。
在这部分,我们将关注模型的主要元素。若你想看所有代码,请点这里的 notebook(https://github.com/simoninithomas/CatDCGAN/blob/master/Cat%20DCGAN.ipynb)。
输入部分
先创建输入占位符:分类器:inputs_real,生成器:inputs_z。
注意,我们用两个学习率,一个是生成器的学习率,一个是分类器的学习率。
DCGANs 对超参数特别敏感,所以精确调参尤其重要。
def model_inputs(real_dim, z_dim): """ Create the model inputs :param real_dim: tuple containing width, height and channels :param z_dim: The dimension of Z :return: Tuple of (tensor of real input images, tensor of z data, learning rate G, learning rate D) """ # inputs_real for Discriminator inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='inputs_real') # inputs_z for Generator inputs_z = tf.placeholder(tf.float32, (None, z_dim), name="input_z") # Two different learning rate : one for the generator, one for the discriminator learning_rate_G = tf.placeholder(tf.float32, name="learning_rate_G") learning_rate_D = tf.placeholder(tf.float32, name="learning_rate_D") return inputs_real, inputs_z, learning_rate_G, learning_rate_D
分类器和生成器
我们用函数 tf.variable_scope 的原因有两个:
第一,我们想要保证所有变量名称都以 generator 或 discriminator 开头,这将为我们之后训练两个网络提供帮助。
第二,我们要用不同的输入重复训练网络:对于生成器,既要训练它,也要在训练后从生成图像中采样;对于分类器,我们需要在生成图像和真实图像间共用变量。
我们先来创建分类器。记住,要用真实或生成图像作为输入,然后输出分数。
需要注意的技术点:
关键点是在每个卷积层加倍过滤器的尺寸;
不建议进行下采样,我们只用一定步长的卷积层;
每层都使用 batch 标准化(输入层除外),因为它会减小协方差转变。想了解更多信息的话请看这篇文章(https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471)。
我们用 Leaky ReLU 作为激活函数,因为它能帮助避免梯度消失问题。
def discriminator(x, is_reuse=False, alpha = 0.2): ''' Build the discriminator network. Arguments --------- x : Input tensor for the discriminator n_units: Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out, logits: ''' with tf.variable_scope("discriminator", reuse = is_reuse): # Input layer 128*128*3 --> 64x64x64 # Conv --> BatchNorm --> LeakyReLU conv1 = tf.layers.conv2d(inputs = x, filters = 64, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv1') batch_norm1 = tf.layers.batch_normalization(conv1, training = True, epsilon = 1e-5, name = 'batch_norm1') conv1_out = tf.nn.leaky_relu(batch_norm1, alpha=alpha, name="conv1_out") # 64x64x64--> 32x32x128 # Conv --> BatchNorm --> LeakyReLU conv2 = tf.layers.conv2d(inputs = conv1_out, filters = 128, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv2') batch_norm2 = tf.layers.batch_normalization(conv2, training = True, epsilon = 1e-5, name = 'batch_norm2') conv2_out = tf.nn.leaky_relu(batch_norm2, alpha=alpha, name="conv2_out") # 32x32x128 --> 16x16x256 # Conv --> BatchNorm --> LeakyReLU conv3 = tf.layers.conv2d(inputs = conv2_out, filters = 256, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv3') batch_norm3 = tf.layers.batch_normalization(conv3, training = True, epsilon = 1e-5, name = 'batch_norm3') conv3_out = tf.nn.leaky_relu(batch_norm3, alpha=alpha, name="conv3_out") # 16x16x256 --> 16x16x512 # Conv --> BatchNorm --> LeakyReLU conv4 = tf.layers.conv2d(inputs = conv3_out, filters = 512, kernel_size = [5, 5], strides = [1, 1], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv4') batch_norm4 = tf.layers.batch_normalization(conv4, training = True, epsilon = 1e-5, name = 'batch_norm4') conv4_out = tf.nn.leaky_relu(batch_norm4, alpha=alpha, name="conv4_out") # 16x16x512 --> 8x8x1024 # Conv --> BatchNorm --> LeakyReLU conv5 = tf.layers.conv2d(inputs = conv4_out, filters = 1024, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv5') batch_norm5 = tf.layers.batch_normalization(conv5, training = True, epsilon = 1e-5, name = 'batch_norm5') conv5_out = tf.nn.leaky_relu(batch_norm5, alpha=alpha, name="conv5_out") # Flatten it flatten = tf.reshape(conv5_out, (-1, 8*8*1024)) # Logits logits = tf.layers.dense(inputs = flatten, units = 1, activation = None) out = tf.sigmoid(logits) return out, logits
再来创建生成器。记住,用随机噪声向量(z)作为输入,根据转置的卷积层输出生成图像。
其主要思想是在每层将过滤器尺寸减半,而将图片尺寸加倍。研究已经发现,用 tanh 作为输出层的激活函数时,生成器的表现最好。
def generator(z, output_channel_dim, is_train=True): ''' Build the generator network. Arguments --------- z : Input tensor for the generator output_channel_dim : Shape of the generator output n_units : Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out: ''' with tf.variable_scope("generator", reuse= not is_train): # First FC layer --> 8x8x1024 fc1 = tf.layers.dense(z, 8*8*1024) # Reshape it fc1 = tf.reshape(fc1, (-1, 8, 8, 1024)) # Leaky ReLU fc1 = tf.nn.leaky_relu(fc1, alpha=alpha) # Transposed conv 1 --> BatchNorm --> LeakyReLU # 8x8x1024 --> 16x16x512 trans_conv1 = tf.layers.conv2d_transpose(inputs = fc1, filters = 512, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv1") # Transposed conv 1 --> BatchNorm --> LeakyReLU # 8x8x1024 --> 16x16x512 trans_conv1 = tf.layers.conv2d_transpose(inputs = fc1, filters = 512, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv1") batch_trans_conv1 = tf.layers.batch_normalization(inputs = trans_conv1, training=is_train, epsilon=1e-5, name="batch_trans_conv1") trans_conv1_out = tf.nn.leaky_relu(batch_trans_conv1, alpha=alpha, name="trans_conv1_out") # Transposed conv 2 --> BatchNorm --> LeakyReLU # 16x16x512 --> 32x32x256 trans_conv2 = tf.layers.conv2d_transpose(inputs = trans_conv1_out, filters = 256, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv2") batch_trans_conv2 = tf.layers.batch_normalization(inputs = trans_conv2, training=is_train, epsilon=1e-5, name="batch_trans_conv2") trans_conv2_out = tf.nn.leaky_relu(batch_trans_conv2, alpha=alpha, name="trans_conv2_out") # Transposed conv 3 --> BatchNorm --> LeakyReLU # 32x32x256 --> 64x64x128 trans_conv3 = tf.layers.conv2d_transpose(inputs = trans_conv2_out, filters = 128, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv3") batch_trans_conv3 = tf.layers.batch_normalization(inputs = trans_conv3, training=is_train, epsilon=1e-5, name="batch_trans_conv3") trans_conv3_out = tf.nn.leaky_relu(batch_trans_conv3, alpha=alpha, name="trans_conv3_out") # Transposed conv 4 --> BatchNorm --> LeakyReLU # 64x64x128 --> 128x128x64 trans_conv4 = tf.layers.conv2d_transpose(inputs = trans_conv3_out, filters = 64, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv4") batch_trans_conv4 = tf.layers.batch_normalization(inputs = trans_conv4, training=is_train, epsilon=1e-5, name="batch_trans_conv4") trans_conv4_out = tf.nn.leaky_relu(batch_trans_conv4, alpha=alpha, name="trans_conv4_out") # Transposed conv 5 --> tanh # 128x128x64 --> 128x128x3 logits = tf.layers.conv2d_transpose(inputs = trans_conv4_out, filters = 3, kernel_size = [5,5], strides = [1,1], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="logits") out = tf.tanh(logits, name="out") return out
▌分类器和生成器的损失
因为我们是同时训练分类器和生成器,因此,两个网络的损失都需要计算。
我们的目标是使分类器认为图片为真实图片时输出“ 1 ”,认为图片是生成图片时输出“ 0 ”。因此,我们需要设计能够反映这一特点的损失函数。
分类器的损失是真实和生成图片的损失之和:
d_loss = d_loss_real + d_loss_fake
d_loss_real 是分类器将真实图片错误地预测为生成图片时的损失。它的计算如下:
用 d_logits_real ,所有标签均为1(因为所有数据都是真实的);
labels = tf.ones_like(tensor) * (1 - smooth) ,使用标签平滑:也就是略微减小标签,例如从 1.0 变为 0.9 ,从而使分类器泛化地更好。
d_loss_fake 是分类器预测一张图片为真实图片、但实际是生成图片时的损失。
用 d_logits_fake ,所有标签都为0.
生成器的损失仍使用分类器中的 d_logits_fake ,但标签均为1,因为生成器要迷惑分类器。
def model_loss(input_real, input_z, output_channel_dim, alpha): """ Get the loss for the discriminator and generator :param input_real: Images from the real dataset :param input_z: Z input :param out_channel_dim: The number of channels in the output image :return: A tuple of (discriminator loss, generator loss) """ # Generator network here g_model = generator(input_z, output_channel_dim) # g_model is the generator output # Discriminator network here d_model_real, d_logits_real = discriminator(input_real, alpha=alpha) d_model_fake, d_logits_fake = discriminator(g_model,is_reuse=True, alpha=alpha) # Calculate losses d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))) return d_loss, g_loss
▌优化器
计算损失后,我们需要分别更新生成器和分类器。
要更新生成器和分类器,我们需要在每部分用 tf.trainable_variables() 获取变量,这样便创建了一个包含已在图中定义好的所有变量的列表。
def model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1): """ Get optimization operations :param d_loss: Discriminator loss Tensor :param g_loss: Generator loss Tensor :param learning_rate: Learning Rate Placeholder :param beta1: The exponential decay rate for the 1st moment in the optimizer :return: A tuple of (discriminator training operation, generator training operation) """ # Get the trainable_variables, split into G and D parts t_vars = tf.trainable_variables() g_vars = [var for var in t_vars if var.name.startswith("generator")] d_vars = [var for var in t_vars if var.name.startswith("discriminator")] update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # Generator update gen_updates = [op for op in update_ops if op.name.startswith('generator')] # Optimizers with tf.control_dependencies(gen_updates): d_train_opt = tf.train.AdamOptimizer(learning_rate=lr_D, beta1=beta1).minimize(d_loss, var_list=d_vars) g_train_opt = tf.train.AdamOptimizer(learning_rate=lr_G, beta1=beta1).minimize(g_loss, var_list=g_vars) return d_train_opt, g_train_opt
▌训练
现在,我们来执行训练函数。
想法很简单:
每迭代5次保存一次模型;
每训练10个 batch 的图片就保存一张;
每迭代15次将 g_loss , d_loss 和生成图片可视化一次。这样做的原因很简单:显示太多图片的话,Jupyter Notebook 可能会出错。
或者,我们也可以直接通过加载保存的模型来查看图片(这样会节省20h的训练时间)。
def train(epoch_count, batch_size, z_dim, learning_rate_D, learning_rate_G, beta1, get_batches, data_shape, data_image_mode, alpha): """ Train the GAN :param epoch_count: Number of epochs :param batch_size: Batch Size :param z_dim: Z dimension :param learning_rate: Learning Rate :param beta1: The exponential decay rate for the 1st moment in the optimizer :param get_batches: Function to get batches :param data_shape: Shape of the data :param data_image_mode: The image mode to use for images ("RGB" or "L") """ # Create our input placeholders input_images, input_z, lr_G, lr_D = model_inputs(data_shape[1:], z_dim) # Losses d_loss, g_loss = model_loss(input_images, input_z, data_shape[3], alpha) # Optimizers d_opt, g_opt = model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1) i = 0 version = "firstTrain" with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Saver saver = tf.train.Saver() num_epoch = 0 if from_checkpoint == True: saver.restore(sess, "./models/model.ckpt") show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False) else: for epoch_i in range(epoch_count): num_epoch += 1 if num_epoch % 5 == 0: # Save model every 5 epochs #if not os.path.exists("models/" + version): # os.makedirs("models/" + version) save_path = saver.save(sess, "./models/model.ckpt") print("Model saved") for batch_images in get_batches(batch_size): # Random noise batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim)) i += 1 # Run optimizers _ = sess.run(d_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_D: learning_rate_D}) _ = sess.run(g_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_G: learning_rate_G}) if i % 10 == 0: train_loss_d = d_loss.eval({input_z: batch_z, input_images: batch_images}) train_loss_g = g_loss.eval({input_z: batch_z}) # Save it image_name = str(i) + ".jpg" image_path = "./images/" + image_name show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False) return losses, samples
▌怎样运行模型
你不能在自己的笔记本上运行这个模型——除非你有自己的 GPU,或者准备好等个十来年。
因此,你最好用在线 GPU 服务,如 AWS 或者 FloydHub 。我个人训练这个 DCGAN 模型花了 20 个小时,用的是 Microsoft Azure 和他们的深度学习虚拟机。
Deep Learning Virtual Machine:
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471
作者 | Thomas Simonini
原文链接
https://medium.freecodecamp.org/how-ai-can-learn-to-generate-pictures-of-cats-ba692cb6eae4