iostat详解
iostat 输出解析
1. /proc/partitions
对于kernel 2.4, iostat 的数据的主要来源是 /proc/partitions,而对于kernel 2.6, 数据主要来自/proc/diskstats或者/sys/block/[block-device-name]/stat。
先看看 /proc/partitions 中有些什么。
# cat /proc/partitionsmajor minor #blocks name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq
3 0 19535040 hda 12524 31127 344371 344360 12941 25534 308434 1097290 -1 15800720 28214662
317172991hda1137116814000000140140
321hda200000000000
355116671hda5100477665620112300610650
36265041hda65189246162770257337529056143880046520146650
3 7 6980211 hda7 11889 30475 338890 340740 12683 22158 279376 953380 0 509350 1294120major: 主设备号。3 代表 hda。
minor:次设备号。7代表No.7分区。
#blocks:设备总块数(1024bytes/block)。19535040*1024=>20003880960(bytes)~2G
name: 设备名称。如 hda7。rio: 完成的读 I/O 设备总次数。指真正向 I/O 设备发起并完成的读操作数目,
也就是那些放到I/O队列中的读请求。注意很多进程发起的读操作
(read())很可能会和其他的操作进行merge,不一定每个read()调用
都引起一个I/O请求。
rmerge:进行了merge的读操作数目。
rsect: 读扇区总数 (512 bytes/sector)ruse: 从进入读队列到读操作完成的时间累积 (毫秒)。上面的例子显示从开机开始,读 hda7 操作共用了约340秒。
wio: 完成的写 I/O 设备总次数。
wmerge:进行了merge的写操作数目。
wsect:写扇区总数
wuse: 从进入写队列到写操作完成的时间累积 (毫秒)running: 已进入 I/O 请求队列,等待进行设备操作的请求总数。上面的例子显示 hda7 上的请求队列长度为 0。
use: 扣除重叠等待时间的净等待时间 (毫秒)。一般比 (ruse+wuse) 要小。比
如5个读请求同时等待了1毫秒,那么ruse值为5ms,而use值为
1ms。use也可以理解为I/O队列处于不为空状态的总时间。hda7的I/O
队列非空时间为 509 秒,约合8分半钟。aveq: 在队列中总的等待时间累积 (毫秒) (约等于ruse+wuse)。为什么是“约等于”而不是等于呢?让我们看看aveq, ruse, wuse的计算方式,这些量一般是在I/O完成后进行更新的:
aveq+=in-flight*(now-disk->stamp);
ruse+=jiffies-req->start_time;//如果是读操作的话
wuse+=jiffies-req->start_time;//如果是写操作的话
注意aveq计算中的in-flight,这是当前还在队列中的I/O请求数目。这些I/O还没有完成,所以不能计算到ruse或wuse中。理论上,只有在I/O全部完成后,aveq才会等于ruse+wuse。举一个例子,假设初始时队列中有三个读请求,每个请求需要1秒钟完成。在1.5秒这一时刻,aveq和ruse各是多少呢?
ruse=1//因为此时只有一个请求完成
aveq=3*1+2*0.5=4//因为第二个请求刚发出0.5秒钟,另还有一个请求在队列中呢。
//这样第一秒钟时刻有3个in-flight,而1.5秒时刻有2个in-flight.
如果三个请求全部完成后,ruse才和aveq相等:
ruse=1+2+3=6
aveq=1+2+3=6
详细说明请参考 linux/drivers/block/ll_rw_blk.c中的end_that_request_last()和disk_round_stats()函数。2. iostat 结果解析
# iostat -xLinux 2.4.21-9.30AX (localhost) 2004年07月14日
avg-cpu: %user %nice %sys %idle3.85 0.00 0.95 95.20
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/hda1.701.700.820.8219.8820.229.9410.1124.5011.8357.81610.7699.96
/dev/hda10.000.000.000.000.010.000.000.0012.920.0010.7710.770.00
/dev/hda50.020.000.000.000.030.000.020.006.600.006.446.040.00
/dev/hda60.010.380.050.030.433.250.211.6246.900.15193.9652.250.41
/dev/hda7 1.66 1.33 0.76 0.79 19.41 16.97 9.70 8.49 23.44 0.79 51.13 19.79 3.07rrqm/s: 每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s:每秒进行merge的写操作数目。即delta(wmerge)/s
r/s:每秒完成的读I/O设备次数。即delta(rio)/s
w/s:每秒完成的写I/O设备次数。即delta(wio)/s
rsec/s:每秒读扇区数。即delta(rsect)/s
wsec/s:每秒写扇区数。即delta(wsect)/s
rkB/s:每秒读K字节数。是rsect/s的一半,因为每扇区大小为512字节。
wkB/s:每秒写K字节数。是wsect/s的一半。
avgrq-sz:平均每次设备I/O操作的数据大小(扇区)。即delta(rsect+wsect)/delta(rio+wio)
avgqu-sz:平均I/O队列长度。即delta(aveq)/s/1000(因为aveq的单位为毫秒)。
await:平均每次设备I/O操作的等待时间(毫秒)。即delta(ruse+wuse)/delta(rio+wio)
svctm:平均每次设备I/O操作的服务时间(毫秒)。即delta(use)/delta(rio+wio)
%util:一秒中有百分之多少的时间用于I/O操作,或者说一秒中有多少时间I/O队列是非空的。
即 delta(use)/s/1000 (因为use的单位为毫秒)如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。
svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),
svctm的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多
也会间接导致svctm的增加。await的大小一般取决于服务时间(svctm)以及
I/O队列的长度和I/O请求的发出模式。如果svctm比较接近await,说明
I/O几乎没有等待时间;如果await远大于svctm,说明I/O队列太长,应用
得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑
更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。
3. I/O 系统 vs. 超市排队
举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当
是看排的队人数,5个人总比20人要快吧?除了数人头,我们也常常看看前面人
购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队
排了。还有就是收银员的速度了,如果碰上了连钱都点不清楚的新手,那就有的
等了。另外,时机也很重要,可能5分钟前还人满为患的收款台,现在已是人
去楼空,这时候交款可是很爽啊,当然,前提是那过去的5分钟里所做的事情
比排队要有意义 (不过我还没发现什么事情比排队还无聊的)。I/O 系统也和超市排队有很多类似之处:
r/s+w/s 类似于交款人的总数
平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
平均服务时间(svctm)类似于收银员的收款速度
平均等待时间(await)类似于平均每人的等待时间
平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
I/O 操作率 (%util)类似于收款台前有人排队的时间比例。我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。
4. 一个例子
# iostat -x 1
avg-cpu:%user%nice%sys%idle
16.240.004.3179.44
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util/dev/cciss/c0d0
0.0044.901.0227.558.16579.594.08289.8020.5722.3578.215.0014.29
/dev/cciss/c0d0p1
0.0044.901.0227.558.16579.594.08289.8020.5722.3578.215.0014.29
/dev/cciss/c0d0p2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: delta(io)/s = r/s +w/s = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。
平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上
78ms,为什么?因为发出的I/O请求太多(每秒钟约29个),假设这些请求是
同时发出的,那么平均等待时间可以这样计算:平均等待时间 = 单个 I/O 服务时间 * ( 1 + 2 + ... + 请求总数-1) / 请求总数
应用到上面的例子: 平均等待时间 = 5ms * (1+2+...+28)/29 = 70ms,和 iostat 给出的 78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。
每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个 左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。
一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。
delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s =
78.21*delta(io)/s=78.21*28.57=2232.8,表明每秒内的I/O请求总共需
要等待2232.8ms。所以平均队列长度应为2232.8ms/1000ms=2.23,而iostat
给出的平均队列长度(avgqu-sz)却为22.35,为什么?!因为iostat中有
bug,avgqu-sz 值应为 2.23,而不是 22.35。5. iostat 的 bug 修正
iostat.c 中是这样计算avgqu-sz的:
((double) current.aveq) / itv
aveq 的单位是毫秒,而 itv 是两次采样之间的间隔,单位是 jiffies。必须换算成同样单位才能相除,所以正确的算法是:
((double) current.aveq) / itv * HZ / 1000
这样,上面 iostat 中输出的 avgqu-sz 值应为 2.23,而不是 22.3。
另外,util值的计算中做了 HZ 值的假设,不是很好,也需要修改。
--- sysstat-4.0.7/iostat.c.orig 2004-07-15 13:31:27.000000000 +0800
+++sysstat-4.0.7/iostat.c2004-07-1513:37:34.000000000+0800
@@ -370,7 +370,7 @@nr_ios = current.rd_ios + current.wr_ios;
tput=nr_ios*HZ/itv;
-util=((double)current.ticks)/itv;
+util=((double)current.ticks)/itv*HZ/1000;
/*current.ticks(ms),itv(jiffies)*/
svctm=tput?util/tput:0.0;
/*kernelgivesticksalreadyinmillisecondsforallplatforms->noneedforfurtherscaling*/
@@-387,12+387,12@@
((double)current.rd_sectors)/itv*HZ,((double)current.wr_sectors)/itv*HZ,
((double)current.rd_sectors)/itv*HZ/2,((double)current.wr_sectors)/itv*HZ/2,
arqsz,
-((double)current.aveq)/itv,
+((double)current.aveq)/itv*HZ/1000,/*aveqisinms*/
await,
/*again:ticksinmilliseconds*/
-svctm*100.0,
+svctm,
/*NB:theticksoutputincurrentsardpatchesisbiasedtooutput1000tickspersecond*/
-util*10.0);
+util*100.0);
}
}
}一会儿 jiffies, 一会儿 ms,看来 iostat 的作者也被搞晕菜了。
这个问题在 systat 4.1.6 中得到了修正:
* The average I/O requests queue length as displayed by iostat -x waswrongly calculated. This is now fixed.
但 Redhat 的 sysstat 版本有些太过时了 (4.0.7)。