hadoop2.5.2 安装部署
0x00 平台环境
OS: CentOS-6.5-x86_64
JDK: jdk-8u111-linux-x64
Hadoop: hadoop-2.6.5
0x01 操作系统基本设置
1.1 网络配置
1.1.1 修改主机名
//查看当前主机名 # hostname //修改当前主机名 # vim /etc/sysconfig/network NETWORKING 是否利用网络 GATEWAY 默认网关 IPGATEWAYDEV 默认网关的接口名 HOSTNAME 主机名 DOMAIN 域名
1.1.2 配置静态IP
# vim /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE 接口名(设备,网卡) BOOTPROTO IP的配置方法(static:固定IP, dhcpHCP, none:手动) HWADDR MAC地址 ONBOOT 系统启动的时候网络接口是否有效(yes/no) TYPE 网络类型(通常是Ethemet) NETMASK 网络掩码 IPADDR IP地址 IPV6INIT IPV6是否有效(yes/no) GATEWAY 默认网关IP地址 DNS1 DNS2
我的配置如下:
DEVICE=eth0 HWADDR=00:0C:29:D3:53:77 TYPE=Ethernet UUID=84d51ff5-228e-44ae-812d-7e59aa190715 ONBOOT=yes NM_CONTROLLED=yes BOOTPROTO=static IPADDR=192.168.1.10 GATEWAY=192.168.1.1 //虚拟机下NAT网络模式这两项不用配置 DNS1=202.204.65.5 DNS2=202.204.65.6
1.1.3 配置hosts文件
# vim /etc/hosts 192.168.1.10 master 192.168.1.11 slave1 192.168.1.12 slave2
1.2 关闭防火墙和SELinux
1.2.1 关闭防火墙
//临时关闭 # service iptables stop //永久关闭 # chkconfig iptables off # service ip6tables stop # chkconfig ip6tables off
1.2.2 关闭SELinux
# vim /etc/sysconfig/selinux SELINUX=enforcing //更改为如下配置 SELINUX=disable
接着执行如下命令
# setenforce 0 # getenforce
1.3 建立一般用户hadoop
如果只有root
用户或者没有hadoop
用户的情况下:
//新增用户 # useradd hadoop //设置密码 # passwd hadoop //根据提示输入两次密码
0x02 配置master免密钥登录slave
2.1 生成密钥
在所有节点执行一直按回车就可以了。
$ su hadoop $ ssh-keygen -t rsa
2.2 追加authorized_keys
将msater
的id_rsa.pub
追加到授权key中(只需要将master
节点的公钥追加到authorized_keys
)
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
更改authorized_keys
的权限,分别在所有节点操作
chomd 600 authorized_keys
2.3 复制authorized_keys
将authorized_keys
复制到所有slave
节点
$ scp ~/.ssh/authorized_keys [email protected]:~/.ssh/ $ scp ~/.ssh/authorized_keys [email protected]:~/.ssh/
2.4 测试
master
免密钥登陆所有slave
节点
$ ssh slave1 $ ssh slave2
0x03 hadoop2.5.2安装
3.1 解压
$ tar -zvxf hadoop-2.6.5.tar.gz $ mv hadoop-2.6.5 ~/cloud/ $ ln -s /home/hadoop/cloud/hadoop-2.6.5 /home/hadoop/cloud/hadoop
3.2 配置环境变量
在尾部追加
# vim /etc/profile # set hadoop environment export HADOOP_HOME=/home/hadoop/cloud/hadoop export HADOOP_COMMON_HOME=$HADOOP_HOME export HADOOP_HDFS_HOME=$HADOOP_HOME export HADOOP_MAPRED_HOME=$HADOOP_HOME export HADOOP_YARN_HOME=$HADOOP_HOME export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export CLASSPATH=.:$JAVA_HOME/lib:$HADOOP_HOME/lib:$CLASSPATH export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
使环境变量立即生效注意在哪个用户下执行该命令,环境变量在那个用户下生效
# su hadoop $ source /etc/profile
0x04 配置hadoop文件
4.1 core-site.xml
注意:hadoop_tmp文件夹一定要配置在存储空间比较大的位置,否则会报错
可能出现的问题:
(1)Unhealthy Nodes 问题
http://blog.csdn.net/korder/a...
(2)local-dirs turned bad
(3)Hadoop运行任务时一直卡在: INFO mapreduce.Job: Running job
http://www.bkjia.com/yjs/1030...
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000</value> </property> <property> <name>hadoop.tmp.dir</name> <value>file:/home/hadoop/cloud/hadoop/hadoop_tmp</value> <!--需要自己创建hadoop_tmp文件夹--> </property> <property> <name>io.file.buffer.size</name> <value>131072</value> </property> <property> <name>hbase.rootdir</name> <value>hdfs://master:9000/hbase</value> </property> </configuration>
4.2 hdfs-site.xml
<configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>master:9001</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/home/hadoop/cloud/hadoop/dfs/name</value> <description>namenode上存储hdfs元数据</description> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/home/hadoop/cloud/hadoop/dfs/data</value> <description>datanode上数据块物理存储位置</description> </property> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> </configuration>
注:访问namenode的 webhdfs 使用50070端口,访问datanode的webhdfs使用50075端口。要想不区分端口,直接使用namenode的IP和端口进行所有webhdfs操作,就需要在所有
datanode上都设置hdfs-site.xml中dfs.webhdfs.enabled为true。
4.3 mapred-site.xml
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>master:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>master:19888</value> </property> <property> <name>mapreduce.jobtracker.http.address</name> <value>NameNode:50030</value> </property> </configuration>
jobhistory是Hadoop自带一个历史服务器,记录Mapreduce历史作业。默认情况下,jobhistory没有启动,可用以下命令启动:
$ sbin/mr-jobhistory-daemon.sh start historyserver
4.4 yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>master:8032</value> </property> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>master:8030</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address</name> <value>master:8031</value> </property> <property> <name>yarn.resourcemanager.admin.address</name> <value>master:8033</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>master:8088</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>master:2181,slave1L2181,slave2:2181</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> </configuration>
4.5 slaves
修改slaves
文件,添加datanode节点hostname到slaves文件中
slave1 slave2
4.6 hadoop-env.sh
vim /home/hadoop/cloud/hadoop/etc/hadoop/hadoop-env.sh export JAVA_HOME=${JAVA_HOME} -> export JAVA_HOME=/usr/java export HADOOP_COMMON_LIB_NATIVE_DIR=/home/hadoop/hadoop/lib/native
4.7 复制到slave节点
最后,将整个/home/hadoop/cloud/hadoop-2.6.5文件夹及其子文件夹使用scp复制到Slave相同目录中:
$ scp -r /home/hadoop/cloud/hadoop-2.6.5 hadoop@slave1:/home/hadoop/cloud/ $ scp -r /home/hadoop/cloud/hadoop-2.6.5 hadoop@slave2:/home/hadoop/cloud/
0x05 运行hadoop
5.1 格式化
确保配置文件中各文件夹已经创建
$ hdfs namenode –format
成功后显示信息
************************************************************/ 17/09/09 04:27:03 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT] 17/09/09 04:27:03 INFO namenode.NameNode: createNameNode [-format] 17/09/09 04:27:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Formatting using clusterid: CID-243cecfb-c003-4213-8112-b5f227616e39 17/09/09 04:27:04 INFO namenode.FSNamesystem: No KeyProvider found. 17/09/09 04:27:04 INFO namenode.FSNamesystem: fsLock is fair:true 17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000 17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.namenode.datanode.registration.ip-hostname-check=true 17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec is set to 000:00:00:00.000 17/09/09 04:27:04 INFO blockmanagement.BlockManager: The block deletion will start around 2017 Sep 09 04:27:04 17/09/09 04:27:04 INFO util.GSet: Computing capacity for map BlocksMap 17/09/09 04:27:04 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:04 INFO util.GSet: 2.0% max memory 889 MB = 17.8 MB 17/09/09 04:27:04 INFO util.GSet: capacity = 2^21 = 2097152 entries 17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false 17/09/09 04:27:04 INFO blockmanagement.BlockManager: defaultReplication = 2 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplication = 512 17/09/09 04:27:04 INFO blockmanagement.BlockManager: minReplication = 1 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplicationStreams = 2 17/09/09 04:27:04 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000 17/09/09 04:27:04 INFO blockmanagement.BlockManager: encryptDataTransfer = false 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000 17/09/09 04:27:04 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE) 17/09/09 04:27:04 INFO namenode.FSNamesystem: supergroup = supergroup 17/09/09 04:27:04 INFO namenode.FSNamesystem: isPermissionEnabled = false 17/09/09 04:27:04 INFO namenode.FSNamesystem: HA Enabled: false 17/09/09 04:27:04 INFO namenode.FSNamesystem: Append Enabled: true 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map INodeMap 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 1.0% max memory 889 MB = 8.9 MB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^20 = 1048576 entries 17/09/09 04:27:05 INFO namenode.NameNode: Caching file names occuring more than 10 times 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map cachedBlocks 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 0.25% max memory 889 MB = 2.2 MB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^18 = 262144 entries 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000 17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache on namenode is enabled 17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map NameNodeRetryCache 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.1 KB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^15 = 32768 entries 17/09/09 04:27:05 INFO namenode.NNConf: ACLs enabled? false 17/09/09 04:27:05 INFO namenode.NNConf: XAttrs enabled? true 17/09/09 04:27:05 INFO namenode.NNConf: Maximum size of an xattr: 16384 17/09/09 04:27:05 INFO namenode.FSImage: Allocated new BlockPoolId: BP-706635769-192.168.32.100-1504902425219 17/09/09 04:27:05 INFO common.Storage: Storage directory /home/hadoop/cloud/hadoop/dfs/name has been successfully formatted. 17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Saving image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression 17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 323 bytes saved in 0 seconds. 17/09/09 04:27:05 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0 17/09/09 04:27:05 INFO util.ExitUtil: Exiting with status 0 17/09/09 04:27:05 INFO namenode.NameNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at master/192.168.32.100 ************************************************************/
5.2 启动hadoop
$ start-dfs.sh $ start-yarn.sh //可以用一条命令来代替: $ start-all.sh
5.3 jps
查看进程
(1)master
主节点进程:
8193 Jps 7943 ResourceManager 7624 NameNode 7802 SecondaryNameNode
(2)slave
数据节点进程:
1413 DataNode 1512 NodeManager 1626 Jps
5.4 通过浏览器查看集群运行状态
概览:http://172.16.1.156:50070/
集群:http://172.16.1.156:8088/
JobHistory:http://172.16.1.156:19888
jobhistory是Hadoop自带一个历史服务器,记录Mapreduce历史作业。默认情况下,jobhistory没有启动,可用以下命令启动:
$ sbin/mr-jobhistory-daemon.sh start historyserver
0x06 测试hadoop
运行wordcount
6.1 建立文件
$ vi wordcount.txt hello you hello me hello everyone
6.2 在HDFS上建立目录
$ hadoop fs -mkdir /data/wordcount $ hadoop fs –mkdir /output/
目录/data/wordcount用来存放Hadoop自带WordCount例子的数据文件,运行这个MapReduce任务结果输出到/output/wordcount目录中。
6.3 上传文件
$ hadoop fs -put wordcount.txt/data/wordcount/
6.4 执行wordcount程序
$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jar wordcount /data/wordcount /output/wordcount/
6.5 查看结果
# hadoop fs -text /output/wordcount/part-r-00000 everyone 1 hello 3 me 1 you 1
0x07 搭建中遇到的问题
7.1 命令不能识别问题
在配置环境变量过程可能遇到输入命令ls命令不能识别问题:ls -bash: ls: command not found
原因:在设置环境变量时,编辑profile文件没有写正确,将export PATH=$JAVA_HOME/bin:$PATH中冒号误写成分号 ,导致在命令行下ls等命令不能够识别。解决方案:export PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
7.2 nodemanager进程自杀
在主机上启动hadoop集群,然后使用jps查看主从机上进程状态,能够看到主机上的resourcemanager和各个从机上的nodemanager,但是过一段时间后,从机上的nodemanager就没有了,主机上的resourcemanager还在。
原因是防火墙处于开启状态:
注:nodemanager启动后要通过心跳机制定期与RM通信,否则RM会认为NM死掉,会停止NM服务。
7.3 SSH连接慢的问题
sshd服务中设置了UseDNS yes,当配置的DNS服务器出现无法访问的问题,可能会造成连接该服务器需要等待10到30秒的时间。由于使用UseDNS,sshd服务器会反向解析连接客户端的ip,即使是在局域网中也会。
当平时连接都是很快,突然变的异常的慢,可能是sshd服务的服务器上配置的DNS失效,例如DNS配置的是外网的,而此时外面故障断开。终极解决方案是不要使用UseDNS,在配置文件/etc/sshd_config(有些linux发行版在/etc/ssh/sshd_config)中找到UseDNS 设置其值为 no,如果前面有#号,需要去掉,重启sshd服务器即可。
vim /etc/ssh/sshd_config UseDNS no
7.4 重新格式化HDFS报错
FATAL org.apache.hadoop.hdfs.server.namenode.NameNode: Exception in namenode join java.io.IOException: There appears to be a gap in the edit log. We expected txid 176531929, but got txid 176533587.
原因:是因为namenode和datenode数据不一致引起的
解决办法:删除master slave节点data
和name
文件夹下的内容,即可解决。缺点是数据不可恢复。
另一种解决办法:http://blog.csdn.net/amber_am...
参考链接:
https://yq.aliyun.com/article...
https://taoistwar.gitbooks.io...
7.5 Unable to load native-hadoop library
WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable
I assume you're running Hadoop on 64bit CentOS. The reason you saw that warning is the native Hadoop library $HADOOP_HOME/lib/native/libhadoop.so.1.0.0 was actually compiled on 32 bit.Anyway, it's just a warning, and won't impact Hadoop's functionalities.
http://stackoverflow.com/ques...
(1)简便的解决方法是:(后来我发现这两步都要做)
下载64位的库,解压到hadoop-2.7.0/lib/native/,不在有警告
下载地址:http://dl.bintray.com/sequenc...
(2)修改hadoop-env.sh
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=/usr/local/hadoop/lib/native" export HADOOP_COMMON_LIB_NATIVE_DIR="/usr/local/hadoop/lib/native/"
7.6 hadoop提交jar包卡死
hadoop提交jar包卡住不会往下执行的解决方案,卡在此处:INFO mapreduce.Job: Running job: job_1474517485267_0001
这里我们在集群的yarn-site.xml
中添加配置
<property> <name>yarn.nodemanager.resource.memory-mb</name> <value>4096</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>2048</value> </property> <property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>2.1</value> </property>
重新启动集群,运行jar包即可
但是,并没有解决我的问题,我的问题是Unhealthy Nodes
,最后才发现!!可能不添加上述配置原来配置也是对的。
http://www.voidcn.com/blog/ga...
2017年1月22日, 星期日
update: 2017-06-02
增加操作系统基本设置部分
修改部分配置文件内容
update:2017.10.11
迁移到segmentfault