JDK源码解析系列之String 之一

1 接口解释
(1)Serializable 这个序列化接口没有任何方法和域,仅用于标识序列化的语意。

(2)Comparable<String> 用于对两个实例化对象比较大小

(3)CharSequence 这个接口是一个只读的字符序列。包括length(),
charAt(int index), subSequence(int start, int end)这几个API接口

2 主要变量

(1)private final char value[];
可以看到,value[]是存储String的内容的,即当使用String str = "abcd";
的时候,本质上,"abcd"是存储在一个char类型的数组中的。

(2) private int hash;

而hash是String实例化的hashcode的一个缓存。因为String经常被用于比较,比如在HashMap中。
如果每次进行比较都重新计算hashcode的值的话,那无疑是比较麻烦的,而保存一个hashcode的缓存无疑能优化这样的操作。

(3)private static final long serialVersionUID = -6849794470754667710L;

Java的序列化机制是通过在运行时判断类的serialVersionUID来验证版本一致性的。在进行反序列化时,JVM会把传来
的字节流中的serialVersionUID与本地相应实体(类)的serialVersionUID进行比较,如果相同就认为是一致的,可以进行反序
列化,否则就会出现序列化版本不一致的异常,如果我们不希望通过编译来强制划分软件版本,即实现序列化接口的实体能够兼容先前版本,
未作更改的类,就需要显式地定义一个名为serialVersionUID,类型为long的变量,不修改这个变量值的序列化实体都可以相互进行
串行化和反串行化

(4) private static final ObjectStreamField[] serialPersistentFields =

new ObjectStreamField[0];

3 构造方法
(1) public String()
(2) public String(String original)
(3) public String(char value[])
(4) public String(char value[], int offset, int count)
(5) public String(int[] codePoints, int offset, int count)
(6) public String(byte ascii[], int hibyte, int offset, int count)
(7) public String(byte ascii[], int hibyte)
(8) public String(byte bytes[], int offset, int length, String charsetName)
(9) public String(byte bytes[], int offset, int length, Charset charset)
(10)public String(byte bytes[], String charsetName)
(11)public String(byte bytes[], Charset charset)
(12)public String(byte bytes[], int offset, int length)
(13)public String(byte bytes[])
(14)public String(StringBuffer buffer)
(15)public String(StringBuilder builder)
String支持多种初始化方法,包括接收String,char[],byte[],StringBuffer等多种参数类型的初始化方法。
但本质上,其实就是将接收到的参数传递给全局变量value[]。

4 内部方法

(1)public int length() {

return value.length;
}

(2)public boolean isEmpty() {

return value.length == 0;
}

(3)public char charAt(int index) {

if ((index < 0) || (index >= value.length)) {
        throw new StringIndexOutOfBoundsException(index);
    }
    return value[index];
  }

知道了String其实内部是通过char[]实现的,那么就不难发现length(),isEmpty(),charAt()这些方法其实就是在内部调用数组的方法。
(4)//返回指定索引的代码点
  public int codePointAt(int index) {

if ((index < 0) || (index >= value.length)) {
       throw new StringIndexOutOfBoundsException(index);
   }
   return Character.codePointAtImpl(value, index, value.length);

}

//返回指定索引前一个代码点
(5) public int codePointBefore(int index) {

int i = index - 1;
    if ((i < 0) || (i >= value.length)) {
        throw new StringIndexOutOfBoundsException(index);
    }
    return Character.codePointBeforeImpl(value, index, 0);
}

//返回指定起始到结束段内字符个数
(6)public int codePointCount(int beginIndex, int endIndex) {

if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
        throw new IndexOutOfBoundsException();
    }
    return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 }

//返回指定索引加上codepointOffset后得到的索引值
(7)public int offsetByCodePoints(int index, int codePointOffset) {

if (index < 0 || index > value.length) {
        throw new IndexOutOfBoundsException();
    }
    return Character.offsetByCodePointsImpl(value, 0, value.length,
            index, codePointOffset);
}

//将字符串复制到dst数组中,复制到dst数组中的起始位置可以指定。值得注意的是,该方法并没有检测复制到dst数组后是否越界。

(8) void getChars(char dst[], int dstBegin) {

System.arraycopy(value, 0, dst, dstBegin, value.length);
}

(9) public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {

if (srcBegin < 0) {
        throw new StringIndexOutOfBoundsException(srcBegin);
    }
    if (srcEnd > value.length) {
        throw new StringIndexOutOfBoundsException(srcEnd);
    }
    if (srcBegin > srcEnd) {
        throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
    }
    System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
}
//获取当前字符串的二进制

(10) public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {

if (srcBegin < 0) {
        throw new StringIndexOutOfBoundsException(srcBegin);
    }
    if (srcEnd > value.length) {
        throw new StringIndexOutOfBoundsException(srcEnd);
    }
    if (srcBegin > srcEnd) {
        throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
    }
    Objects.requireNonNull(dst);

    int j = dstBegin;
    int n = srcEnd;
    int i = srcBegin;
    char[] val = value;   /* avoid getfield opcode */

    while (i < n) {
        dst[j++] = (byte)val[i++];
    }
}

(11)public byte[] getBytes(String charsetName)

throws UnsupportedEncodingException {
    if (charsetName == null) throw new NullPointerException();
    return StringCoding.encode(charsetName, value, 0, value.length);
}


 (12)public byte[] getBytes() {

  return StringCoding.encode(value, 0, value.length);

}
(13) public boolean equals(Object anObject) {

if (this == anObject) {
        return true;
    }
    if (anObject instanceof String) {
        String anotherString = (String)anObject;
        int n = value.length;
        if (n == anotherString.value.length) {
            char v1[] = value;
            char v2[] = anotherString.value;
            int i = 0;
            while (n-- != 0) {
                if (v1[i] != v2[i])
                    return false;
                i++;
            }
            return true;
        }
    }
    return false;
}
(14)public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

(15)public boolean contentEquals(CharSequence cs) {
    // Argument is a StringBuffer, StringBuilder
    if (cs instanceof AbstractStringBuilder) {
        if (cs instanceof StringBuffer) {
            synchronized(cs) {
               return nonSyncContentEquals((AbstractStringBuilder)cs);
            }
        } else {
            return nonSyncContentEquals((AbstractStringBuilder)cs);
        }
    }
    // Argument is a String
    if (cs instanceof String) {
        return equals(cs);
    }
    // Argument is a generic CharSequence
    char v1[] = value;
    int n = v1.length;
    if (n != cs.length()) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        if (v1[i] != cs.charAt(i)) {
            return false;
        }
    }
    return true;
   }

   这个主要是用来比较String和StringBuffer或者StringBuild的内容是否一样。可以看到传入参数是CharSequence ,
   这也说明了StringBuffer和StringBuild同样是实现了CharSequence。源码中先判断参数是从哪一个类实例化来的,
   再根据不同的情况采用不同的方案,不过其实大体都是采用上面那个for循环的方式来进行判断两字符串是否内容相同。

(16)public int compareTo(String anotherString) {

int len1 = value.length;
    int len2 = anotherString.value.length;
    int lim = Math.min(len1, len2);
    char v1[] = value;
    char v2[] = anotherString.value;

    int k = 0;
    while (k < lim) {
        char c1 = v1[k];
        char c2 = v2[k];
        if (c1 != c2) {
            return c1 - c2;
        }
        k++;
    }
    return len1 - len2;
   }

   这个就是String对Comparable接口中方法的实现了。其核心就是那个while循环,通过从第一个开始比较每一个字符,
   当遇到第一个较小的字符时,判定该字符串小。

(17)public int compareTo(String anotherString) {

int len1 = value.length;
    int len2 = anotherString.value.length;
    int lim = Math.min(len1, len2);
    char v1[] = value;
    char v2[] = anotherString.value;

    int k = 0;
    while (k < lim) {
        char c1 = v1[k];
        char c2 = v2[k];
        if (c1 != c2) {
            return c1 - c2;
        }
        k++;
    }
    return len1 - len2;
}
这个就是String对Comparable接口中方法的实现了。其核心就是那个while循环,通过从第一个开始比较每一个字符,当遇到第一个较小的字符时,判定该字符串小

(18)

public int compareToIgnoreCase(String str) {
    return CASE_INSENSITIVE_ORDER.compare(this, str);
}
这个也是比较字符串大小,规则和上面那个比较方法基本相同,差别在于这个方法忽略大小写

(19)public boolean regionMatches(int toffset, String other, int ooffset,

int len) {
    char ta[] = value;
    int to = toffset;
    char pa[] = other.value;
    int po = ooffset;
    // Note: toffset, ooffset, or len might be near -1>>>1.
    if ((ooffset < 0) || (toffset < 0)
            || (toffset > (long)value.length - len)
            || (ooffset > (long)other.value.length - len)) {
        return false;
    }
    while (len-- > 0) {
        if (ta[to++] != pa[po++]) {
            return false;
        }
    }
    return true;
}
比较该字符串和其他一个字符串从分别指定地点开始的n个字符是否相等。看代码可知道,其原理还是通过一个while去循环对应的比较区域进行判断,但在比较之前会做判定,判定给定参数是否越界。

(20) public boolean startsWith(String prefix, int toffset) {

char ta[] = value;
        int to = toffset;
        char pa[] = prefix.value;
        int po = 0;
        int pc = prefix.value.length;
        // Note: toffset might be near -1>>>1.
        if ((toffset < 0) || (toffset > value.length - pc)) {
            return false;
        }
        while (--pc >= 0) {
            if (ta[to++] != pa[po++]) {
                return false;
            }
        }
        return true;
    }  
判断当前字符串是否以某一段其他字符串开始的,和其他字符串比较方法一样,其实就是通过一个while来循环比较。

(21)public int indexOf(int ch, int fromIndex) {

final int max = value.length;
        if (fromIndex < 0) {
            fromIndex = 0;
        } else if (fromIndex >= max) {
            // Note: fromIndex might be near -1>>>1.
            return -1;
        }

        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            // handle most cases here (ch is a BMP code point or a
            // negative value (invalid code point))
            final char[] value = this.value;
            for (int i = fromIndex; i < max; i++) {
                if (value[i] == ch) {
                    return i;
                }
            }
            return -1;
        } else {
            return indexOfSupplementary(ch, fromIndex);
        }
    }

(22) public int indexOf(int ch) {

return indexOf(ch, 0);
    }

(23) public String substring(int beginIndex) {

if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        int subLen = value.length - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
    }
这个方法可以返回字符串中一个子串,看最后一行可以发现,其实就是指定头尾,然后构造一个新的字符串。

(24) public String concat(String str) {

int otherLen = str.length();
        if (otherLen == 0) {
            return this;
        }
        int len = value.length;
        char buf[] = Arrays.copyOf(value, len + otherLen);
        str.getChars(buf, len);
        return new String(buf, true);
    }

    concat的作用是将str拼接到当前字符串后面,通过代码也可以看出其实就是建一个新的字符串。

(25) public String replace(char oldChar, char newChar) {

if (oldChar != newChar) {
            int len = value.length;
            int i = -1;
            char[] val = value; /* avoid getfield opcode */

            while (++i < len) {
                if (val[i] == oldChar) {
                    break;
                }
            }
            if (i < len) {
                char buf[] = new char[len];
                for (int j = 0; j < i; j++) {
                    buf[j] = val[j];
                }
                while (i < len) {
                    char c = val[i];
                    buf[i] = (c == oldChar) ? newChar : c;
                    i++;
                }
                return new String(buf, true);
            }
        }
        return this;
    }
    替换操作,主要是将原来字符串中的oldChar全部替换成newChar。看这里实现,主要是先找到第一个所要替换的字符串的位置 i ,
    将i之前的字符直接复制到一个新char数组。然后从 i 开始再对每一个字符进行判断是不是所要替换的字符。

(26) public String trim() {

int len = value.length;
        int st = 0;
        char[] val = value;    /* avoid getfield opcode */

        while ((st < len) && (val[st] <= ' ')) {
            st++;
        }
        while ((st < len) && (val[len - 1] <= ' ')) {
            len--;
        }
        return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
    }

    这个函数平时用的应该比较多,删除字符串前后的空格,原理是通过找出前后第一个不是空格的字符串,返回原字符串的该子串。

(27) public CharSequence subSequence(int beginIndex, int endIndex) {

return this.substring(beginIndex, endIndex);
    }
    返回一个新的字符类型的字符串

本文借鉴于 https://www.cnblogs.com/liste...,情联系删除

相关推荐