MapReduce编程实战
MapReduce是什么
MapReduce是Hadoop(这种大数据处理生态环境)的编程模型。既然称为模型,则意味着它有固定的形式。
MapReduce编程模型,就是Hadoop生态环境进行数据分析处理的固定的编程形式。
这种固定的编程形式描述如下:
MapReduce任务过程被分为两个阶段:map阶段和reduce阶段。每个阶段都以键/值对作为输入和输出,并由程序员选择他们的类型。
也就是说,程序员只需要定义两个函数:map函数和reduce函数就好了,其他的计算过程交给hadoop就好了。
通过以上描述,我们可以看出:
MapReduce所能处理的场景实际是非常具体的,非常有限的,只是“数据的统计分析”场景。
输入数据准备
天气预报官方网址:ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
https://github.com/tomwhite/hadoop-book/tree/master/input/ncdc/all
如果简单测试,也可以把下面这几行粘贴到一个文本文件也行,这就是正确的天气文件:
0035029070999991902010113004+64333+023450FM-12+000599999V0201401N011819999999N0000001N9-01001+99999100311ADDGF104991999999999999999999MW1381
0035029070999991902010120004+64333+023450FM-12+000599999V0201401N013919999999N0000001N9-01171+99999100121ADDGF108991999999999999999999MW1381
0035029070999991902010206004+64333+023450FM-12+000599999V0200901N009819999999N0000001N9-01611+99999100121ADDGF108991999999999999999999MW1381
0029029070999991902010213004+64333+023450FM-12+000599999V0200901N011819999999N0000001N9-01721+99999100121ADDGF108991999999999999999999
0029029070999991902010220004+64333+023450FM-12+000599999V0200901N009819999999N0000001N9-01781+99999100421ADDGF108991999999999999999999
本文中,我们把存储天气格式的文本文件命名为:temperature.txt
MapReduce Java编程
有两套JavaAPI,旧的是org.apache.hadoop.mapred包,MapReduce编程是使用实现接口的方式;新的是org.apache.hadoop.marreduce包,MapReduce编程是使用继承抽象基类的方式;其实都差不多,下面都会有显示。
Maven
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.0.4</version>
</dependency>
也可以不用官方的,用别人修改重新编译过的,可以直接在Eclipse里面像运行普通Java程序一样运行MapReduce。
编译过的hadoop-core-1.0.4.jar,可以在本地模拟MapReduce
如果Eclipse workspace在d:,则我们可以把d:的某个目录,比如d:\input作为输入目录;d:\output作为输出目录。
MapReduce编程模型里面这样写就可以了:
FileInputFormat.setInputPaths(job, new Path("/input"));
FileOutputFormat.setOutputPath(job, new Path("/output"));
下载地址:
具体下载目录在 /2014年资料/4月/16日/MapReduce编程实战
----------------------------------------------------------------------------
或者:
------------------------------------------分割线------------------------------------------
------------------------------------------分割线------------------------------------------
下载后,直接覆盖maven资源库位置的文件即可。
接口方式
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
public class MaxTemperature {
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(MaxTemperature.class);
conf.setJobName("Max Temperature");
// FileInputFormat.addInputPaths(conf, new Path(args[0]));
// FileOutputFormat.setOutputPath(conf, new Path(args[1]));
FileInputFormat.setInputPaths(conf, new Path("/hadooptemp/input/2"));
FileOutputFormat.setOutputPath(conf, new Path("/hadooptemp/output"));
conf.setMapperClass(MaxTemperatureMapper.class);
conf.setReducerClass(MaxTemperatureReduce.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
JobClient.runJob(conf);
}
}
class MaxTemperatureMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private static final int MISSING = 9999;
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;
if (line.charAt(87) == '+') {
airTemperature = Integer.parseInt(line.substring(88, 92));
} else {
airTemperature = Integer.parseInt(line.substring(87, 92));
}
String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
output.collect(new Text(year), new IntWritable(airTemperature));
}
}
}
class MaxTemperatureReduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());
}
output.collect(key, new IntWritable(maxValue));
}
}
抽象类方式
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class NewMaxTemperature {
public static void main(String[] args) throws Exception {
Job job = new Job();
job.setJarByClass(NewMaxTemperature.class);
// FileInputFormat.setInputPaths(job, new Path(args[0]));
// FileOutputFormat.setOutputPath(job, new Path(args[1]));
FileInputFormat.setInputPaths(job, new Path("/hadooptemp/input/2"));
FileOutputFormat.setOutputPath(job, new Path("/hadooptemp/output"));
job.setMapperClass(NewMaxTemperatureMapper.class);
job.setReducerClass(NewMaxTemperatureReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
class NewMaxTemperatureMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
private static final int MISSING = 9999;
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;
if (line.charAt(87) == '+') {
airTemperature = Integer.parseInt(line.substring(88, 92));
} else {
airTemperature = Integer.parseInt(line.substring(87, 92));
}
String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));
}
}
}
class NewMaxTemperatureReduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, Context context)
throws IOException, InterruptedException {
int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());
}
context.write(key, new IntWritable(maxValue));
}
}
相关推荐
通过实现MapReduce计算结果保存到MySql数据库过程,掌握多种方式保存计算结果的技术,加深了对MapReduce的理解;创建maven项目,项目名称hdfs,这里不再说明。红色部分为增加内容: