TensorFlow中权重的随机初始化的方法
一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的:
def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random normal values. """
也就是按照正态分布初始化权重,mean是正态分布的平均值,stddev是正态分布的标准差(standard deviation),seed是作为分布的random seed(随机种子,我百度了一下,跟什么伪随机数发生器还有关,就是产生随机数的),在mnist/concolutional中seed赋值为66478,挺有意思,不知道是什么原理。
后面还有truncated_normal的定义:
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a truncated normal distribution. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the truncated normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """
截断正态分布,以前都没听说过。
TensorFlow还提供了平均分布等。
相关推荐
xiaouncle 2020-07-31
guangyacyb 2020-06-14
pengkunstone 2020-06-09
jessieHJ 2020-05-31
Lexan 2020-04-15
wangqing 2020-04-07
xclxcl 2020-03-04
新路 2020-02-26
明天你好 2020-01-28
大脸猫脸大 2020-01-18
georgeandgeorge 2019-12-28
doubinning 2019-12-05
singer 2019-12-04
那年夏天 2019-11-17
xinhao 2019-11-12
jocleyn 2019-11-10
zhinanpolang 2019-08-23
prettyice 2010-03-24