欧拉函数

代码以后再补

欧拉函数

我们用$\phi(n)$表示欧拉函数

定义:$\phi(n)$表示对于整数$n$,小于等于$n$中与$n$互质的数的个数

性质

1.$\phi(n)$为积性函数

2.$\sum_{d|n}\phi(d)=n$

3.$1$到$n$中与$n$互质的数的和为$n*\dfrac{\phi(n)}{2}(n>1)$

计算方法

假设我们需要计算$\phi(n)$

分情况讨论

1.当$n=1$时

很明显,答案为$1$

2.当$n$为质数时

根据素数的定义,答案为$n-1$

(仅有$n$与$n$不互质)

3.当$n$为合数时

我们已经知道了$n$为素数的情况

不妨对$n$进行质因数分解

设$n=a_1^{p_1}*a_2^{p_2}...*a_k^{p_k}$

假设$k=1$

那么$\phi(p^k)=p^k-p^{k-1}$

证明:

考虑容斥,与一个数互素的数的个数就是这个数减去与它不互素的数的个数

因为$p$是素数,所以在$p^k$中与其不互素的数为$1*p$,$2*p$....$p^{k-1}*p$,有$p^{k-1}$个

得证

当$k\neq 1$时

$$\phi(n)$$

$$=\varphi \left( a^{p_{1}}_{1}a^{p_{2}\ldots }_{2}a^{Pk}_{k}\right)$$

$$=\prod ^{k}_{i=1}a^{P_i}-a^{P_{i}-1}_{i}$$

$$=\prod ^{k}_{i=1}a^{Pi}_{i}(1-\dfrac {1}{p_{i}})$$

$$=n*\prod ^{k}_{i=1}(1-\dfrac {1}{p_{i}})$$

4.Euler筛法

因为欧拉函数是积性函数

因此可以使用线性筛法

相关推荐