对python 矩阵转置transpose的实例讲解
在读图片时,会用到这么的一段代码:
image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(path) arr_img = np.asarray(img, dtype='float64') arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb。再把这些元素一字排开
transpose是什么意识呢? 看如下例子:
arr1 = array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]])
这是原来的矩阵。如果对其进行转置,执行arr2 = arr1.transpose((1,0,2))
得到:
array([[[ 0, 1, 2, 3], [ 8, 9, 10, 11]], [[ 4, 5, 6, 7], [12, 13, 14, 15]]])
过程是怎样的?
arr1.shape 应该是(2, 2, 4) 意为 2维,2*4矩阵
arr1.transpose(*args) 里面的参数,可以这么理解,他是调换arr1.shape的顺序,咱来给arr1.shape标一下角标哈,(2[0], 2[1], 4[2]) [ ] 里是shape的索引,对吧,
transpose((1, 0, 2)) 的意思是 按照这个顺序 重新设置shape 也就是 (2[1], 2[0], 4[2])
虽然看起来 变换前后的shape都是 2,2,4 , 但是问题来了,transpose是转置
shape按照(1,0,2)的顺序重新设置了, array里的所有元素 也要按照这个规则重新组成新矩阵
比如 8 在arr1中的索引是 (1, 0, 0) 那么按照刚才的变换规则,就是 (0, 1, 0) 看看跟你结果arr2的位置一样了吧,依此类推..
另外一个知识点:
对于一维的shape,转置是不起作用的,举例:
x=linspace(0,4,5) #array([0.,1.,2.,3.,4.]) y=transpose(x) # 会转置失败。
如果想正确使用的话:
x.shape=(5,1) y=transpose(x) #就可以了
相关推荐
xingxinmanong 2012-03-09
peakyi 2019-02-27
wklken的笔记 2020-01-11
吴小伟 2019-11-30
liusarazhang 2019-10-21
flymist 2017-02-03
Datawhale 2019-05-18
mieleizhi0 2019-03-26
manongpengzai 2017-02-03
amazingbo 2019-06-28
amazingbo 2019-06-28
rookieliang 2010-03-17
waiwaiLILI 2010-03-17
python0 2017-11-24
Haopython 2019-01-28
Pythonandme 2019-01-23
python0 2018-12-12