Python实现常见的回文字符串算法
回文
利用python 自带的翻转 函数reversed
自己实现
最长的回文子串
暴力破解
暴力破解,枚举所有的子串,对每个子串判断是否为回文, 时间复杂度为 O(n^3)
动态规划
时间复杂度为 O(n^2), 空间复杂度为 O(n^2)
Manacher 算法
Manacher 算法首先对字符串做一个预处理,使得所有的串都是奇数长度, 插入的是同样的符号且符号不存在与原串中,串的回文性不受影响
我们把回文串中最右位置与其对称轴的距离称为回文半径,Manacher 算法定义了一个回文半径数组 RL,RL[i]表示以第 i 个字符为对称轴的回文半径,对于上面得到的插入分隔符的串来说,我们可以得到 RL数组
我们还求了 RL[i] - 1: 我们发现RL[i] -1 正好是初始字符串中以位置i 为对称轴的最长回文长度
所以下面就是重点如何求得 RL 数组了
下面是算法实现
空间复杂度:借助了一个辅助数组,空间复杂度为 O(n)
时间复杂度:尽管内层存在循环,但是内层循环只对尚未匹配的部分进行,对于每一个字符来说,只会进行一次,所以时间复杂度是 O(n)
最长回文前缀
所谓前缀,就是以第一个字符开始
下面的最长回文前缀
将原串逆转,那么问题就转变为求原串的前缀和逆串后缀相等且长度最大的值, 这个问题其实就是 KMP 算法中的 next 数组的求解了
具体求解: 将原串逆转并拼接到原串中, 以’#’ 分隔原串和逆转避免内部字符串干扰。
添加字符生成最短回文字符串
这道题其实跟上面基本是一样的,
实例:
我们先求字符串的最长回文前缀, 然后剩余的字符串逆转并拼接到字符串的头部即是问题所求
最长回文子序列
动态规划法
dp[i][j] 表示子序列 s[i..j] 中存在的最长回文子序列长度
初始化dp[i][i] = 1
当 s[i] == s[j] 为 true 时,dp[i][j] = dp[i+1][j - 1] + 2
当 s[i] == s[j] 为 false 时,dp[i][j] = max(dp[i+1][j], dp[i][j - 1])
时间复杂度为 O(n^2), 空间复杂度为 O(n^2)