《Linux应用进程控制(四) — 特殊的进程》

1. 僵尸进程

如果一个进程已经终止,但是它的父进程尚未调用 wait() 或 waitpid() 对它进行清理,这时的进程状态称为僵死状态,处于僵死状态的进程称为僵尸进程(zombie process)。任何进程在刚终止时都是僵尸进程,正常情况下,僵尸进程都立刻被父进程清理了。如果父进程先退出 ,子进程被init接管,子进程退出后init会回收其占用的相关资源。

实例:

父进程 fork 出子进程,子进程终止,而父进程既不终止也不调用 wait 清理子进程:

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
 
int main(void)
{
  int i = 100;
  pid_t pid=fork();
  if(pid < 0)
  {
    perror("fork failed.");
    exit(1);
  }
  if(pid > 0)
  {
    printf("This is the parent process. My PID is %d.\n", getpid());
    for(; i > 0; i--)
    {
      sleep(1);
    }
  }
  else if(pid == 0)
  {
    printf("This is the child process. My PID is: %d. My PPID is: %d.\n", getpid(), getppid());
  }
  return 0;
}

把上面的代码保存到文件 zomprocdemo.c 文件中,并执行下面的命令编译:

$ gcc zomprocdemo.c -o zomprocdemo

然后运行编译出来的 zomprocdemo 程序:

$ ./zomprocdemo

《Linux应用进程控制(四) — 特殊的进程》

   此时子进程已经退出,但是父进程没有退出也没有通过 wait() 调用处理子进程。我们使用 ps 命令查看进程的状态:

《Linux应用进程控制(四) — 特殊的进程》

   上图红框中的大写字母 "Z" 说明 PID 为 112712 的进程此时处于僵死的状态。

在结束 sleep 后父进程退出。当父进程退出后,子进程会变成孤儿进程,此时它会被一个init进程收养。

init进程就是 wiat() 这些孤儿进程,并最终释放它们占用的系统进程表中的资源。这样,这些已经僵死的孤儿进程就彻底的被清除了。

僵尸进程的危害:

在进程退出的时候,内核释放该进程所有的资源,包括打开的文件,占用的内存等。但是仍然为其保留一定的信息(包括进程号 PID,退出状态 the termination status of the process,运行时间 the amount of CPU time taken by the process 等)。直到父进程通过 wait / waitpid 来取时才释放。

如果进程不调用 wait / waitpid 的话, 那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵死进程,将因为没有可用的进程号而导致系统不能产生新的进程。

如何避免僵尸进程:

1.在fork子进程后,父进程应该调用wait()和waitpid()函数等待子进程结束。

2.当父进程没有调用wait()或waitpid()函数的时候,可以直接kill掉父进程,让子进程成为孤儿进程,init进程会去接管孤儿进程。

实例:

void sig_chld( int signo ) {
    pid_t pid;
    int stat;
    pid = wait(&stat);    
    printf( "child %d exit\n", pid );
    return;
}

int main() {
    signal(SIGCHLD,  &sig_chld);
  if( child == -1 ) { //error
      perror("\nfork child error.");
      exit(0);
  } else if(child == 0){
     cout << "\nIm in child process:" <<  getpid() << endl;
     exit(0);
  } else {
     cout << "\nIm in parent process."  << endl;
     sleep(600);
  }}

为了防止产生僵尸进程,在fork子进程之后我们都要wait它们;同时,当子进程退出的时候,内核都会给父进程一个SIGCHLD信号,所以我们可以建立一个捕获SIGCHLD信号的信号处理函数,在函数体中调用wait(或waitpid),就可以清理退出的子进程以达到防止僵尸进程的目的。

 然后,即便我们捕获SIGCHLD信号并且调用wait来清理退出的进程,仍然不能彻底避免产生僵尸进程;我们来看一种特殊的情况:

我们假设有一个client/server的程序,对于每一个连接过来的client,server都启动一个新的进程去处理来自这个client的请求。然后我们有一个client进程,在这个进程内,发起了多个到server的请求(假设5个),则server会fork 5个子进程来读取client输入并处理(同时,当客户端关闭套接字的时候,每个子进程都退出);当我们终止这个client进程的时候 ,内核将自动关闭所有由这个client进程打开的套接字,那么由这个client进程发起的5个连接基本在同一时刻终止。这就引发了5个FIN,每个连接一个。server端接受到这5个FIN的时候,5个子进程基本在同一时刻终止。这就又导致差不多在同一时刻递交5个SIGCHLD信号给父进程,如图2所示:

《Linux应用进程控制(四) — 特殊的进程》

正是这种同一信号多个实例的递交造成了我们即将查看的问题。

我们首先运行服务器程序,然后运行客户端程序,运用ps命令看以看到服务器fork了5个子进程,如图3:

《Linux应用进程控制(四) — 特殊的进程》

   然后我们Ctrl+C终止客户端进程,在我机器上边测试,可以看到信号处理函数运行了3次,还剩下2个僵尸进程,如图4:

《Linux应用进程控制(四) — 特殊的进程》

   通过上边这个实验我们可以看出,建立信号处理函数并在其中调用wait并不足以防止出现僵尸进程,其原因在于:所有5个信号都在信号处理函数执行之前产生,而信号处理函数只执行一次,因为Unix信号一般是不排队的。(http://www.cnblogs.com/yuxingfirst/p/3160697.html) 更为严重的是,本问题是不确定的,依赖于客户FIN到达服务器主机的时机,信号处理函数执行的次数并不确定。

正确的解决办法是调用waitpid而不是wait,这个办法的方法为:信号处理函数中,在一个循环内调用waitpid,以获取所有已终止子进程的状态。我们必须指定WNOHANG选项,他告知waitpid在有尚未终止的子进程在运行时不要阻塞。(我们不能在循环内调用wait,因为没有办法防止wait在尚有未终止的子进程在运行时阻塞,wait将会阻塞到现有的子进程中第一个终止为止),下边的程序分别给出了这两种处理办法(func_wait, func_waitpid)。

//server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <errno.h>
#include <error.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <string.h>
#include <signal.h>
#include <sys/wait.h>

typedef void sigfunc(int);

void func_wait(int signo) {
    pid_t pid;
    int stat;
    pid = wait(&stat);    
    printf( "child %d exit\n", pid );
    return;
}
void func_waitpid(int signo) {
    pid_t pid;
    int stat;
    while( (pid = waitpid(-1, &stat, WNOHANG)) > 0 ) {
        printf( "child %d exit\n", pid );
    }
    return;
}

sigfunc* signal( int signo, sigfunc *func ) {
    struct sigaction act, oact;
    act.sa_handler = func;
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;
    if ( signo == SIGALRM ) {
#ifdef            SA_INTERRUPT
        act.sa_flags |= SA_INTERRUPT;    /* SunOS 4.x */
#endif
    } else {
#ifdef           SA_RESTART
        act.sa_flags |= SA_RESTART;    /* SVR4, 4.4BSD */
#endif
    }
    if ( sigaction(signo, &act, &oact) < 0 ) {
        return SIG_ERR;
    }
    return oact.sa_handler;
} 


void str_echo( int cfd ) {
    ssize_t n;
    char buf[1024];
again:
    memset(buf, 0, sizeof(buf));
    while( (n = read(cfd, buf, 1024)) > 0 ) {
        write(cfd, buf, n); 
    }
    if( n <0 && errno == EINTR ) {
        goto again; 
    } else {
        printf("str_echo: read error\n");
    }
}

int main() {

    signal(SIGCHLD, &func_waitpid);    

    int s, c;
    pid_t child;
    if( (s = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) {
        int e = errno; 
        perror("create socket fail.\n");
        exit(0);
    }
    
    struct sockaddr_in server_addr, child_addr; 
    bzero(&server_addr, sizeof(server_addr));
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(9998);
    server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

    if( bind(s, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) {
        int e = errno; 
        perror("bind address fail.\n");
        exit(0);
    }
    
    if( listen(s, 1024) < 0 ) {
        int e = errno; 
        perror("listen fail.\n");
        exit(0);
    }
    while(1) {
        socklen_t chilen = sizeof(child_addr); 
        if ( (c = accept(s, (struct sockaddr *)&child_addr, &chilen)) < 0 ) {
            perror("listen fail.");
            exit(0);
        }

        if( (child = fork()) == 0 ) {
            close(s); 
            str_echo(c);
            exit(0);
        }
        close(c);
    }
}

//client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <errno.h>
#include <error.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <string.h>
#include <signal.h>

void str_cli(FILE *fp, int sfd ) {
    char sendline[1024], recvline[2014];
    memset(recvline, 0, sizeof(sendline));
    memset(sendline, 0, sizeof(recvline));
    while( fgets(sendline, 1024, fp) != NULL ) {
        write(sfd, sendline, strlen(sendline)); 
        if( read(sfd, recvline, 1024) == 0 ) {
            printf("server term prematurely.\n"); 
        }
        fputs(recvline, stdout);
        memset(recvline, 0, sizeof(sendline));
        memset(sendline, 0, sizeof(recvline));
    }
}

int main() {
    int s[5]; 
    for (int i=0; i<5; i++) {
        if( (s[i] = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) {
            int e = errno; 
            perror("create socket fail.\n");
            exit(0);
        }
    }

    for (int i=0; i<5; i++) {
        struct sockaddr_in server_addr, child_addr; 
        bzero(&server_addr, sizeof(server_addr));
        server_addr.sin_family = AF_INET;
        server_addr.sin_port = htons(9998);
        inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr);
        if( connect(s[i], (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) {
            perror("connect fail."); 
            exit(0);
        }
    }

    sleep(10);
    str_cli(stdin, s[0]);
    exit(0);
}

wait和waitpid函数:

调用wait或waitpid的进程会发生什么:

  • 如果其所有子进程都还在运行,则阻塞。
  • 如果一个子进程已终止,正等待父进程会获取其终止状态,然后立即返回。
  • 如果没有任何子进程,则立即出错返回。
#include <sys/wait.h>

pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

两个函数返回值:成功,返回进程ID;出错:返回0或-1

这两个函数的区别:

  • 在一个子进程终止前,wait使其调用者阻塞,而waitpid有一个选项,可使调用者不阻塞。
  • waitpid并不等待在其调用之后额第一个终止子进程,它有若干个选项,可以控制它所等待的进程。

相关推荐