《Linux应用进程控制(四) — 特殊的进程》
1. 僵尸进程
如果一个进程已经终止,但是它的父进程尚未调用 wait() 或 waitpid() 对它进行清理,这时的进程状态称为僵死状态,处于僵死状态的进程称为僵尸进程(zombie process)。任何进程在刚终止时都是僵尸进程,正常情况下,僵尸进程都立刻被父进程清理了。如果父进程先退出 ,子进程被init接管,子进程退出后init会回收其占用的相关资源。
实例:
父进程 fork 出子进程,子进程终止,而父进程既不终止也不调用 wait 清理子进程:
#include <unistd.h> #include <stdio.h> #include <stdlib.h> int main(void) { int i = 100; pid_t pid=fork(); if(pid < 0) { perror("fork failed."); exit(1); } if(pid > 0) { printf("This is the parent process. My PID is %d.\n", getpid()); for(; i > 0; i--) { sleep(1); } } else if(pid == 0) { printf("This is the child process. My PID is: %d. My PPID is: %d.\n", getpid(), getppid()); } return 0; }
把上面的代码保存到文件 zomprocdemo.c 文件中,并执行下面的命令编译:
$ gcc zomprocdemo.c -o zomprocdemo
然后运行编译出来的 zomprocdemo 程序:
$ ./zomprocdemo
此时子进程已经退出,但是父进程没有退出也没有通过 wait() 调用处理子进程。我们使用 ps 命令查看进程的状态:
上图红框中的大写字母 "Z" 说明 PID 为 112712 的进程此时处于僵死的状态。
在结束 sleep 后父进程退出。当父进程退出后,子进程会变成孤儿进程,此时它会被一个init进程收养。
init进程就是 wiat() 这些孤儿进程,并最终释放它们占用的系统进程表中的资源。这样,这些已经僵死的孤儿进程就彻底的被清除了。
僵尸进程的危害:
在进程退出的时候,内核释放该进程所有的资源,包括打开的文件,占用的内存等。但是仍然为其保留一定的信息(包括进程号 PID,退出状态 the termination status of the process,运行时间 the amount of CPU time taken by the process 等)。直到父进程通过 wait / waitpid 来取时才释放。
如果进程不调用 wait / waitpid 的话, 那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵死进程,将因为没有可用的进程号而导致系统不能产生新的进程。
如何避免僵尸进程:
1.在fork子进程后,父进程应该调用wait()和waitpid()函数等待子进程结束。
2.当父进程没有调用wait()或waitpid()函数的时候,可以直接kill掉父进程,让子进程成为孤儿进程,init进程会去接管孤儿进程。
实例:
void sig_chld( int signo ) { pid_t pid; int stat; pid = wait(&stat); printf( "child %d exit\n", pid ); return; } int main() { signal(SIGCHLD, &sig_chld); if( child == -1 ) { //error perror("\nfork child error."); exit(0); } else if(child == 0){ cout << "\nIm in child process:" << getpid() << endl; exit(0); } else { cout << "\nIm in parent process." << endl; sleep(600); }}
为了防止产生僵尸进程,在fork子进程之后我们都要wait它们;同时,当子进程退出的时候,内核都会给父进程一个SIGCHLD信号,所以我们可以建立一个捕获SIGCHLD信号的信号处理函数,在函数体中调用wait(或waitpid),就可以清理退出的子进程以达到防止僵尸进程的目的。
然后,即便我们捕获SIGCHLD信号并且调用wait来清理退出的进程,仍然不能彻底避免产生僵尸进程;我们来看一种特殊的情况:
我们假设有一个client/server的程序,对于每一个连接过来的client,server都启动一个新的进程去处理来自这个client的请求。然后我们有一个client进程,在这个进程内,发起了多个到server的请求(假设5个),则server会fork 5个子进程来读取client输入并处理(同时,当客户端关闭套接字的时候,每个子进程都退出);当我们终止这个client进程的时候 ,内核将自动关闭所有由这个client进程打开的套接字,那么由这个client进程发起的5个连接基本在同一时刻终止。这就引发了5个FIN,每个连接一个。server端接受到这5个FIN的时候,5个子进程基本在同一时刻终止。这就又导致差不多在同一时刻递交5个SIGCHLD信号给父进程,如图2所示:
正是这种同一信号多个实例的递交造成了我们即将查看的问题。
我们首先运行服务器程序,然后运行客户端程序,运用ps命令看以看到服务器fork了5个子进程,如图3:
然后我们Ctrl+C终止客户端进程,在我机器上边测试,可以看到信号处理函数运行了3次,还剩下2个僵尸进程,如图4:
通过上边这个实验我们可以看出,建立信号处理函数并在其中调用wait并不足以防止出现僵尸进程,其原因在于:所有5个信号都在信号处理函数执行之前产生,而信号处理函数只执行一次,因为Unix信号一般是不排队的。(http://www.cnblogs.com/yuxingfirst/p/3160697.html) 更为严重的是,本问题是不确定的,依赖于客户FIN到达服务器主机的时机,信号处理函数执行的次数并不确定。
正确的解决办法是调用waitpid而不是wait,这个办法的方法为:信号处理函数中,在一个循环内调用waitpid,以获取所有已终止子进程的状态。我们必须指定WNOHANG选项,他告知waitpid在有尚未终止的子进程在运行时不要阻塞。(我们不能在循环内调用wait,因为没有办法防止wait在尚有未终止的子进程在运行时阻塞,wait将会阻塞到现有的子进程中第一个终止为止),下边的程序分别给出了这两种处理办法(func_wait, func_waitpid)。
//server.c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/socket.h> #include <errno.h> #include <error.h> #include <netinet/in.h> #include <netinet/ip.h> #include <arpa/inet.h> #include <string.h> #include <signal.h> #include <sys/wait.h> typedef void sigfunc(int); void func_wait(int signo) { pid_t pid; int stat; pid = wait(&stat); printf( "child %d exit\n", pid ); return; } void func_waitpid(int signo) { pid_t pid; int stat; while( (pid = waitpid(-1, &stat, WNOHANG)) > 0 ) { printf( "child %d exit\n", pid ); } return; } sigfunc* signal( int signo, sigfunc *func ) { struct sigaction act, oact; act.sa_handler = func; sigemptyset(&act.sa_mask); act.sa_flags = 0; if ( signo == SIGALRM ) { #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; /* SunOS 4.x */ #endif } else { #ifdef SA_RESTART act.sa_flags |= SA_RESTART; /* SVR4, 4.4BSD */ #endif } if ( sigaction(signo, &act, &oact) < 0 ) { return SIG_ERR; } return oact.sa_handler; } void str_echo( int cfd ) { ssize_t n; char buf[1024]; again: memset(buf, 0, sizeof(buf)); while( (n = read(cfd, buf, 1024)) > 0 ) { write(cfd, buf, n); } if( n <0 && errno == EINTR ) { goto again; } else { printf("str_echo: read error\n"); } } int main() { signal(SIGCHLD, &func_waitpid); int s, c; pid_t child; if( (s = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) { int e = errno; perror("create socket fail.\n"); exit(0); } struct sockaddr_in server_addr, child_addr; bzero(&server_addr, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(9998); server_addr.sin_addr.s_addr = htonl(INADDR_ANY); if( bind(s, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) { int e = errno; perror("bind address fail.\n"); exit(0); } if( listen(s, 1024) < 0 ) { int e = errno; perror("listen fail.\n"); exit(0); } while(1) { socklen_t chilen = sizeof(child_addr); if ( (c = accept(s, (struct sockaddr *)&child_addr, &chilen)) < 0 ) { perror("listen fail."); exit(0); } if( (child = fork()) == 0 ) { close(s); str_echo(c); exit(0); } close(c); } } //client.c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/socket.h> #include <errno.h> #include <error.h> #include <netinet/in.h> #include <netinet/ip.h> #include <arpa/inet.h> #include <string.h> #include <signal.h> void str_cli(FILE *fp, int sfd ) { char sendline[1024], recvline[2014]; memset(recvline, 0, sizeof(sendline)); memset(sendline, 0, sizeof(recvline)); while( fgets(sendline, 1024, fp) != NULL ) { write(sfd, sendline, strlen(sendline)); if( read(sfd, recvline, 1024) == 0 ) { printf("server term prematurely.\n"); } fputs(recvline, stdout); memset(recvline, 0, sizeof(sendline)); memset(sendline, 0, sizeof(recvline)); } } int main() { int s[5]; for (int i=0; i<5; i++) { if( (s[i] = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) { int e = errno; perror("create socket fail.\n"); exit(0); } } for (int i=0; i<5; i++) { struct sockaddr_in server_addr, child_addr; bzero(&server_addr, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(9998); inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr); if( connect(s[i], (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) { perror("connect fail."); exit(0); } } sleep(10); str_cli(stdin, s[0]); exit(0); }
wait和waitpid函数:
调用wait或waitpid的进程会发生什么:
- 如果其所有子进程都还在运行,则阻塞。
- 如果一个子进程已终止,正等待父进程会获取其终止状态,然后立即返回。
- 如果没有任何子进程,则立即出错返回。
#include <sys/wait.h> pid_t wait(int *statloc); pid_t waitpid(pid_t pid, int *statloc, int options); 两个函数返回值:成功,返回进程ID;出错:返回0或-1
这两个函数的区别:
- 在一个子进程终止前,wait使其调用者阻塞,而waitpid有一个选项,可使调用者不阻塞。
- waitpid并不等待在其调用之后额第一个终止子进程,它有若干个选项,可以控制它所等待的进程。