Python 数据分析之 pandas 进阶(二)

六、分组

对于“group by”操作,我们通常是指以下一个或多个操作步骤:
(Splitting)按照一些规则将数据分为不同的组
(Applying)对于每组数据分别执行一个函数
(Combining)将结果组合刀一个数据结构中
将要处理的数组是:

df = pd.DataFrame({
            'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
            'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
            'C': np.random.randn(8),
            'D': np.random.randn(8)
        })
    df
     
        A    B    C            D
    0    foo    one    0.961295    -0.281012
    1    bar    one    0.901454    0.621284
    2    foo    two    -0.584834    0.919414
    3    bar    three    1.259104    -1.012103
    4    foo    two    0.153107    1.108028
    5    bar    two    0.115963    1.333981
    6    foo    one    1.421895    -1.456916
    7    foo    three    -2.103125    -1.757291

1、分组并对每个分组执行sum函数:

df.groupby('A').sum()
     
        C            D
    A        
    bar    2.276522    0.943161
    foo    -0.151661    -1.467777

2、通过多个列进行分组形成一个层次索引,然后执行函数:

df.groupby(['A', 'B']).sum()
     
            C            D
    A    B        
    bar    one    0.901454    0.621284
            three    1.259104        -1.012103
            two    0.115963        1.333981
    foo    one    2.383191    -1.737928
            three    -2.103125    -1.757291
            two    -0.431727    2.027441

七、Reshaping

Stack

tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                         'foo', 'foo', 'qux', 'qux'],
                        ['one', 'two', 'one', 'two',
                         'one', 'two', 'one', 'two']]))
    tuples
     
    [('bar', 'one'),
     ('bar', 'two'),
     ('baz', 'one'),
     ('baz', 'two'),
     ('foo', 'one'),
     ('foo', 'two'),
     ('qux', 'one'),
     ('qux', 'two')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
    df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
    df2 = df[:4]
    df2
     
             A            B
    first    second        
    bar    one    -0.907306    -0.009961
            two    0.905177    -2.877961
    baz    one    -0.356070    -0.373447
            two    -1.496644    -1.958782
stacked = df2.stack()
    stacked 
     
    first  second   
    bar    one     A   -0.907306
                   B   -0.009961
           two     A    0.905177
                   B   -2.877961
    baz    one     A   -0.356070
                   B   -0.373447
           two     A   -1.496644
                   B   -1.958782
    dtype: float64
stacked.unstack()
     
            A            B
    first    second        
    bar    one    -0.907306    -0.009961
            two    0.905177    -2.877961
    baz    one    -0.356070    -0.373447
            two    -1.496644    -1.958782
stacked.unstack(1)
     
        second    one           two
    first            
    bar    A    -0.907306    0.905177
            B    -0.009961    -2.877961
    baz    A    -0.356070    -1.496644
            B    -0.373447    -1.958782

八、相关操作

要处理的数组为:

df
     
                A            B            C            D    F
    2013-01-01    0.000000    0.000000    0.135704    5    NaN
    2013-01-02    0.139027    1.683491    -1.031190    5    1
    2013-01-03    -0.596279    -1.211098    1.169525    5    2
    2013-01-04    0.367213    -0.020313    2.169802    5    3
    2013-01-05    0.224122    1.003625    -0.488250    5    4
    2013-01-06    0.186073    -0.537019    -0.252442    5    5

(一)、统计

1、执行描述性统计:

df.mean()
     
    A    0.053359
    B    0.153115
    C    0.283858
    D    5.000000
    F    3.000000
    dtype: float64

2、在其他轴上进行相同的操作:

df.mean(1)
     
    2013-01-01    1.283926
    2013-01-02    1.358266
    2013-01-03    1.272430
    2013-01-04    2.103341
    2013-01-05    1.947899
    2013-01-06    1.879322
    Freq: D, dtype: float64

3、对于拥有不同维度,需要对齐的对象进行操作,pandas会自动的沿着指定的维度进行广播

dates
    s = pd.Series([1,3,4,np.nan,6,8], index=dates).shift(2)
    s
     
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
     
    2013-01-01   NaN
    2013-01-02   NaN
    2013-01-03     1
    2013-01-04     3
    2013-01-05     4
    2013-01-06   NaN
    Freq: D, dtype: float64

(二)、Apply

对数据应用函数:

df.apply(np.cumsum)
     
                A            B            C            D    F
    2013-01-01    0.000000    0.000000    0.135704    5    NaN
    2013-01-02    0.139027    1.683491    -0.895486    10    1
    2013-01-03    -0.457252    0.472393    0.274039    15    3
    2013-01-04    -0.090039    0.452081    2.443841    20    6
    2013-01-05    0.134084    1.455706    1.955591    25    10
    2013-01-06    0.320156    0.918687    1.703149    30    15
df.apply(lambda x: x.max() - x.min())
     
    A    0.963492
    B    2.894589
    C    3.200992
    D    0.000000
    F    4.000000
    dtype: float64

(三)、字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素。

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    s.str.lower()
     
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object

九、时间序列

1、时区表示:

rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
    ts = pd.Series(np.random.randn(len(rng)), rng)
    ts
     
    2012-03-06   -0.932261
    2012-03-07   -1.405305
    2012-03-08    0.809844
    2012-03-09   -0.481539
    2012-03-10   -0.489847
    Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC')
    ts_utc
     
    2012-03-06 00:00:00+00:00   -0.932261
    2012-03-07 00:00:00+00:00   -1.405305
    2012-03-08 00:00:00+00:00    0.809844
    2012-03-09 00:00:00+00:00   -0.481539
    2012-03-10 00:00:00+00:00   -0.489847
    Freq: D, dtype: float64

2、时区转换

ts_utc.tz_convert('US/Eastern')
     
    2012-03-05 19:00:00-05:00   -0.932261
    2012-03-06 19:00:00-05:00   -1.405305
    2012-03-07 19:00:00-05:00    0.809844
    2012-03-08 19:00:00-05:00   -0.481539
    2012-03-09 19:00:00-05:00   -0.489847
    Freq: D, dtype: float64

3、时区跨度转换

rng = pd.date_range('1/1/2012', periods=5, freq='M')
    ts = pd.Series(np.random.randn(len(rng)), index=rng)
    ps = ts.to_period()
    ts
    ps
    ps.to_timestamp()
     
    2012-01-31    0.932519
    2012-02-29    0.247016
    2012-03-31   -0.946069
    2012-04-30    0.267513
    2012-05-31   -0.554343
    Freq: M, dtype: float64
   
  
    2012-01    0.932519
    2012-02    0.247016
    2012-03   -0.946069
    2012-04    0.267513
    2012-05   -0.554343
    Freq: M, dtype: float64
     
    2012-01-01    0.932519
    2012-02-01    0.247016
    2012-03-01   -0.946069
    2012-04-01    0.267513
    2012-05-01   -0.554343
    Freq: MS, dtype: float64

十、画图

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    ts = ts.cumsum()
    ts

图片描述

十一、Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据。

df = pd.DataFrame({
            'id':[1,2,3,4,5,6],
            'raw_grade':['a','b','b','a','a','e']
        })
    df
     
        id    raw_grade
    0    1    a
    1    2    b
    2    3    b
    3    4    a
    4    5    a
    5    6    e

1、将原始的grade转换为Categorical数据类型:

df['grade'] = df['raw_grade'].astype('category', ordered=True)
    df['grade'] 
     
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a < b < e]

2、将Categorical类型数据重命名为更有意义的名称:

df['grade'].cat.categories = ['very good', 'good', 'very bad']

3、对类别进行重新排序,增加缺失的类别:

df['grade'] = df['grade'].cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good'])
    df['grade']
     
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad < bad < medium < good < very good]

4、排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

df.sort('grade')
     
        id    raw_grade    grade
    5    6    e            very bad
    1    2    b            good
    2    3    b            good
    0    1    a            very good
    3    4    a            very good
    4    5    a            very good

5、对Categorical列进行排序时存在空的类别:

df.groupby("grade").size()
     
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64

以上代码不想自己试一试吗?
镭矿 raquant提供 jupyter(研究) 在线练习学习 python 的机会,无需安装 python 即可运行 python 程序。

相关推荐