Matlab中用fit做曲线拟合

1.确定要拟合的类型

一般情况下matlab会直接提供常用的类型,用fittype创建拟合模型。至于matlab具体提供了哪些模型,参见帮助"List of library models for curve and surface fitting"

ft = fittype( 'gauss1' ); %高斯拟合

2.要拟合的数据格式

在最简单的情况下,即拟合两个向量X,Y,则其必须是列向量

3.拟合

 使用fit进行拟合

fitresult= fit( xData, yData, ft,);

其输出fitresult是一个cfit型的对象(object),主要包含两个内容:1,拟合模型,即第一步中确定的拟合类型;2,拟合所得系数的值。例如对第一步中所创建的高斯模型,其fitresult 的值为

fitresult = 
     General model Gauss1:
     fo(x) =  a1*exp(-((x-b1)/c1)^2)
     Coefficients (with 95% confidence bounds):
       a1 =       45.54  (42.45, 48.64)
       b1 =     0.01011  (0.0101, 0.01012)
       c1 =   0.0002551  (0.0002353, 0.0002748)

获得了这样一个object,如何把其中的系数提取出来呢?这个要用到coeffvalues函数

>> coeffvalues(fitresult)

ans =

   45.5426    0.0101    0.0003

4.获取拟合优度

现在已经获得了拟合系数,那到底拟合得怎么样呢?可以使用下面的格式获取拟合优度

[fitresult ,gof] = fit(X,Y,'gauss1');

gof是一个结构体,包含4个量

sse:Sunm of squares due to error
rsquare:R-square 对这个就是线性回归里的那个R2,与线性回归里的具有同样的意义
dfe:Degrees of freedom in the error,不懂
adjrsquare: 也不懂
rmse: 误差的均方根值(rms)

嗯,暂时只需要用到这些,更高级的要用的时候再说。