使用生成对抗网络(GAN)生成手写字
先放结果
这是通过GAN迭代训练30W次,耗时3小时生成的手写字图片效果,大部分的还是能看出来是数字的。
实现原理
简单说下原理,生成对抗网络需要训练两个任务,一个叫生成器,一个叫判别器,如字面意思,一个负责生成图片,一个负责判别图片,生成器不断生成新的图片,然后判别器去判断哪儿哪儿不行,生成器再不断去改进,不断的像真实的图片靠近。
这就如同一个造假团伙一样,A负责生产,B负责就鉴定,刚开始的时候,两个人都是菜鸟,A随便画了一幅画拿给B看,B说你这不行,然后A再改进,当然需要改进的不止A,随着A的改进,B也得不断提升,B需要发现更细微的差异,直至他们觉得已经没什么差异了(实际肯定还存在差异),他们便决定停止"训练",开始卖吧。
实现代码
# -*- coding: utf-8 -*- # @author: Awesome_Tang # @date: 2019-02-22 # @version: python2.7 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from datetime import datetime import numpy as np import os import matplotlib.pyplot as plt os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' class Config: alpha = 1e-2 drop_rate = 0.5 # 保留比例 steps = 300000 # 迭代次数 batch_size = 128 # 每批次训练样本数 epochs = 100 # 训练轮次 num_units = 128 size = 784 noise_size = 100 smooth = 0.01 learning_rate = 1e-4 print_per_step = 1000 class Gan: def __init__(self): print('Loading data......') # 读取MNIST数据集 self.mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义占位符,真实图片和生成的图片 self.real_images = tf.placeholder(tf.float32, [None, Config.size], name='real_images') self.noise = tf.placeholder(tf.float32, [None, Config.noise_size], name='noise') self.drop_rate = tf.placeholder('float') self.train_step() def generator_graph(self, noise, n_units, out_dim, alpha, reuse=False): with tf.variable_scope('generator', reuse=reuse): # Hidden layer h1 = tf.layers.dense(noise, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) h1 = tf.layers.dropout(h1, rate=self.drop_rate) # Logits and tanh output logits = tf.layers.dense(h1, out_dim, activation=None) out = tf.tanh(logits) return out @staticmethod def discriminator_graph(image, n_units, alpha, reuse=False): with tf.variable_scope('discriminator', reuse=reuse): # Hidden layer h1 = tf.layers.dense(image, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) logits = tf.layers.dense(h1, 1, activation=None) # out = tf.sigmoid(logits) return logits def net(self): # generator fake_image = self.generator_graph(self.noise, Config.num_units, Config.size, Config.alpha) # discriminator real_logits = self.discriminator_graph(self.real_images, Config.num_units, Config.alpha) fake_logits = self.discriminator_graph(fake_image, Config.num_units, Config.alpha, reuse=True) # discriminator的loss # 识别真实图片 d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logits, labels=tf.ones_like(real_logits)) * ( 1 - Config.smooth)) # 识别生成的图片 d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.zeros_like(fake_logits))) # 总体loss d_loss = tf.add(d_loss_real, d_loss_fake) # generator的loss g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.ones_like(fake_logits)) * ( 1 - Config.smooth)) net_vars = tf.trainable_variables() # generator中的tensor g_vars = [var for var in net_vars if var.name.startswith("generator")] # discriminator中的tensor d_vars = [var for var in net_vars if var.name.startswith("discriminator")] # optimizer dis_optimizer = tf.train.AdamOptimizer(Config.learning_rate).minimize(d_loss, var_list=d_vars) gen_optimizer = tf.train.AdamOptimizer(Config.learning_rate).minimize(g_loss, var_list=g_vars) return dis_optimizer, gen_optimizer, d_loss, g_loss def train_step(self): dis_optimizer, gen_optimizer, d_loss, g_loss = self.net() print('Training & Evaluating......') start_time = datetime.now() sess = tf.Session() sess.run(tf.global_variables_initializer()) for step in range(Config.steps): real_image, _ = self.mnist.train.next_batch(Config.batch_size) real_image = real_image * 2 - 1 # generator的输入噪声 batch_noise = np.random.uniform(-1, 1, size=(Config.batch_size, Config.noise_size)) sess.run(gen_optimizer, feed_dict={self.noise: batch_noise, self.drop_rate: Config.drop_rate}) sess.run(dis_optimizer, feed_dict={self.noise: batch_noise, self.real_images: real_image}) if step % Config.print_per_step == 0: dis_loss = sess.run(d_loss, feed_dict={self.noise: batch_noise, self.real_images: real_image}) gen_loss = sess.run(g_loss, feed_dict={self.noise: batch_noise, self.drop_rate: 1.}) end_time = datetime.now() time_diff = (end_time - start_time).seconds msg = 'Step {:3}k Dis_Loss:{:6.2f}, Gen_Loss:{:6.2f}, Time_Usage:{:6.2f} mins.' print(msg.format(int(step / 1000), dis_loss, gen_loss, time_diff / 60.)) self.gen_image(sess) def gen_image(self, sess): sample_noise = np.random.uniform(-1, 1, size=(25, Config.noise_size)) samples = sess.run( self.generator_graph(self.noise, Config.num_units, Config.size, Config.alpha, reuse=True), feed_dict={self.noise: sample_noise}) plt.figure(figsize=(8, 8), dpi=80) for i in range(25): img = samples[i] plt.subplot(5, 5, i + 1) plt.imshow(img.reshape((28, 28)), cmap='Greys_r') plt.axis('off') plt.show() if __name__ == "__main__": Gan()
Peace~~
相关推荐
Iamthedoctor 2020-09-08
绝望的乐园 2020-09-02
绝望的乐园 2020-08-18
CSDNyun 2020-07-21
zhangsh00 2020-07-23
zhangsh00 2020-06-16
Beryl 2020-05-31
sayhaha 2020-05-28
zhangsh00 2020-05-26
Ephemeroptera 2020-05-21
Ephemeroptera 2020-05-15
架构技术交流 2020-04-23
xmdxcsj 2020-03-30
朝花amp夕拾 2020-03-09
绝望的乐园 2020-02-15
zhangsh00 2020-01-03
liongxiong 2019-12-31
Ephemeroptera 2019-12-09