人工智能和机器学习如何从物联网数据中提取关键见解
过去几年,围绕物联网的大部分讨论都集中在连网设备本身——它们是什么、有多少以及如何保护它们。
虽然所有这些小端点都很重要,但在物联网中更重要的是这些设备所生成的大量数据,以及通过分析可以从中获得的业务见解。当谈到为这些关键见解制定路线时,人工智能(AI)和机器学习(ML)是照亮道路的技术。
几十年来,数据分析主要涉及计算机编译和存储信息,并将其呈现给人类进行分析,这一过程比较缓慢、容易出错,并且无法解读隐藏在数据深处的趋势。这些缺点在物联网环境中更加严重,在物联网环境中,大量传感器和移动设备产生的数据量呈指数级增长。
网络巨头思科预计,到2022年,连网的物联网和移动设备数量将超过1200万台,其中移动网络流量将达到近1兆字节。并且当您将高速5G网络添加到组合中时,挑战会变得更加艰巨。
随着所有这些数据的堆积,人工智能及其子集,机器学习(ML)和深度学习已成为关键工具。
机器学习使用算法对数据进行排序,从中学习并找到可用于指导业务决策、做出预测、提供警报和解决问题的模式和趋势。通过将经过优化的算法应用于大量数据,可以训练机器学习系统以了解如何完成工作并适应变化。
深度学习使用神经网络,其功能类似于人脑。神经网络利用了一组算法,而这些算法通过一系列计算层传递数据。这些层识别并提取图像、声音或文本等元素,然后最终得到所需的输出。
人工智能和相关学科并不新鲜。自1990年代以来,科学家一直在研究人工智能,并一直致力于人工神经网络。但是,近年来发生的变化是,计算机的功能强大到足以处理大量数据,而这主要得益于具有增强并行计算能力的高性能GPU加速器。
与此同时,数据存储容量爆炸式增长,并且可用于训练机器的数据量激增。反馈给算法的数据越多,它们学习的速度就越快,性能也就越好。这对物联网来说是一个巨大的福音,它越来越依赖于挖掘和掌握数据中的模式。