Kai - Golang实现的目标检测云服务
YOLO/Darknet是目前比较流行的Object Detection算法(后面统一称为Darknet),在GPU上的表现不但速度快而且准确率很高。但是使用起来不方便,只提供了命令行接口和简单的Python接口。所以我想用RESTful来实现一个云端的Darknet服务kai。
选择用Go的原因不是考虑并发,而是goroutine之间的同步能方便的处理,适合实现Pipeline的功能。问题来了,Darknet是c语言实现的,那Go必须得用cgo进行封装,才能调用c函数。目标是为了实现三个基本功能:1. 图片检测 2. 视频检测 3. 摄像头检测。为了方便使用我修改了Darknet的部分代码,然后重新定义下面几个函数:
// Set a gpu device void set_gpu(int gpu); // Recognize a image void image_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile); // Recognize a video void video_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile); // Recognize a camera stream void camera_detector(char *datacfg, char *cfgfile, char *weightfile, int camindex, float thresh, float hier_thresh, char *outpath);
有了这几个函数,就好办了,下面用cgo导入相应的库和头文件即可:
// #cgo pkg-config: opencv // #cgo linux LDFLAGS: -ldarknet -lm -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand -lcudnn // #cgo darwin LDFLAGS: -ldarknet // #include "yolo.h" import "C" // SetGPU set a gpu device you want func SetGPU(gpu int) { C.set_gpu(C.int(gpu)) } // ImageDetector recognize a image func ImageDetector(dc, cf, wf, fn string, t, ht float64, of ...string) { ... } // VideoDetector recognize a video func VideoDetector(dc, cf, wf, fn string, t, ht float64, of ...string) { ... } // CameraDetector recognize a camera stream func CameraDetector(dc, cf, wf string, i int, t, ht float64, of ...string) { ... }
这样对Darknet的封装go-yolo就完成了。
下面进入主题,介绍一下kai的实现。
kai的设计目标如下:
- 后端基于Darknet(不支持训练)
- 提供RESTful接口进行图片和视频的检测
- 支持Amazon S3下载和上传
- 支持Ftp下载和上传
- 支持检测结果持久化到MongoDB
架构图是这样的
这里重点介绍一下Kai的Pipeline机制,这里的Pipeline包括下载(Download),检测(Yolo)和上(Upload)传这一系列流程。
先上个图:
这里的难点在于下载(Download),检测(Yolo)和上传(Upload)这三个步骤可以配置不同的Goroutine数量,而这三步之间是一个同步操作。
- 首先需要定义3个buffered channel来进行同步
// KaiServer represents the server for processing all job requests type KaiServer struct { net.Listener logger *logging.Logger config types.ServerConfig listenAddr string listenNetwork string router *Router server *http.Server db db.Storage // jobDownBuff is the buffered channel for job downloading jobDownBuff chan types.Job // jobDownBuff is the buffered channel for job todo jobTodoBuff chan types.Job // jobDownBuff is the buffered channel for job done jobDoneBuff chan types.Job }
- Pipeline的执行流程如下
// Pipeline contains downloading, processing and uploading a job func Pipeline(logger *logging.Logger, config types.ServerConfig, dbInstance db.Storage, jobDownBuff chan types.Job, jobTodoBuff chan types.Job, jobDoneBuff chan types.Job, job types.Job) { logger.Infof("pipeline-job %+v", job) // download a job setupAndDownloadJob(logger, config.System, dbInstance, job, jobDownBuff) // jobDownBuff -> jobTodoBuff -> jobDoneBuff yoloJob(logger, config, dbInstance, jobDownBuff, jobTodoBuff, jobDoneBuff) // upload a job uploadJob(logger, dbInstance, jobDoneBuff) }
- 下载(Download)
// setupAndDownloadJob setup and download jobs into jobDownBuff func setupAndDownloadJob(logger *logging.Logger, config types.SystemConfig, dbInstance db.Storage, job types.Job, jobDownBuff chan<- types.Job) { go func() { logger.Infof("start setup and download a job: %+v", job) newJob, err := SetupJob(logger, job.ID, dbInstance, config) job = *newJob if err != nil { logger.Error("setup-job failed", err) return } downloadFunc := downloaders.GetDownloadFunc(job.Source) if err := downloadFunc(logger, config, dbInstance, job.ID); err != nil { logger.Error("download failed", err) job.Status = types.JobError job.Details = err.Error() dbInstance.UpdateJob(job.ID, job) return } jobDownBuff <- job }() }
- 检测(Yolo)
func yoloJob(logger *logging.Logger, config types.ServerConfig, dbInstance db.Storage, jobDownBuff <-chan types.Job, jobTodoBuff chan types.Job, jobDoneBuff chan types.Job) { go func() { job, ok := <-jobDownBuff if !ok { logger.Info("job download buffer is closed") return } logger.Infof("start a yolo job: %+v", job) // limit the number of job in the jobTodoBuff jobTodoBuff <- job jobTodo, ok := <-jobTodoBuff if !ok { logger.Info("job todo buffer is closed") return } nGpu := config.System.NGpu t := yolo.NewTask(config.Yolo, jobTodo.Media.Cate, nGpu, jobTodo.LocalSource, jobTodo.LocalDestination) logger.Debugf("yolo task: %+v", *t) yolo.StartTask(t, logger, dbInstance, jobTodo.ID) jobDoneBuff <- job }() }
- 上传(Upload)
func uploadJob(logger *logging.Logger, dbInstance db.Storage, jobDoneBuff <-chan types.Job) { go func() { jobDone, ok := <-jobDoneBuff if !ok { logger.Info("job done buffer is closed") return } logger.Infof("start a upload job: %+v", jobDone) uploadFunc := uploaders.GetUploadFunc(jobDone.Destination) if err := uploadFunc(logger, dbInstance, jobDone.ID); err != nil { logger.Error("upload failed", err) jobDone.Status = types.JobError jobDone.Details = err.Error() dbInstance.UpdateJob(jobDone.ID, jobDone) return } logger.Info("erasing temporary files") if err := CleanSwap(dbInstance, jobDone.ID); err != nil { logger.Error("erasing temporary files failed", err) } jobDone.Status = types.JobFinished dbInstance.UpdateJob(jobDone.ID, jobDone) logger.Infof("end a job: %+v", jobDone) }() }
到此,这个项目主要机制都已经介绍完了,如果大家有兴趣的可以去点击下面的项目主页。
项目链接:
go-yolo: https://github.com/ZanLabs/go...
kai: https://github.com/ZanLabs/kai