Python有趣|数据分析三板斧(内附python学习教程分享)

Python有趣|数据分析三板斧(内附python学习教程分享)

前言

天下武功中,哪个是最简单,最实用的了?那当然是程咬金的三板斧。传说中,程咬金晚上睡觉,梦见一老神仙,教了他三十六式板斧,这套功夫威力极大,而且招式简单,十分适合程咬金,但是程咬金醒来之后就只记住了三招,便有了这三板斧。就是这简单的三板斧,帮助李世民建立大唐江山。

这个教程将以简单,有效,实用为原则,让大家也能简单入门Python数据分析,学会这三板斧,让读者以后在学习数据分析的过程中,少走弯路。

Python数据分析流程

用Python做数据分析的优点就是,通过一个pandas库就能完成整个数据分析流程。简单的流程是,一读二看三处理四分析五展示,skr~。如下图所示。

PS:所有数据分析不以业务为依托,都是耍流氓~

Python有趣|数据分析三板斧(内附python学习教程分享)

读取数据

这里以全球星巴克的数据为例(https://www.kaggle.com/starbucks/store-locations),首先提出问题(前文说过要以业务为基础,这里我们只能提前定义几个感兴趣的问题),哪些国家星巴克店铺较多;哪些城市星巴克店铺较多;中国星巴克店铺分布情况。

首先通过read_csv读取数据,将文件转换为DataFrame格式,这样我们就可以在Python中进行处理。当然,pandas支持各种文件格式(read_excel,read_sql等等),做详细系列的时候逐一讲解。

import numpy as np

import pandas as pd

data = pd.read_csv('directory.csv')

data.head()

Python有趣|数据分析三板斧(内附python学习教程分享)

查看数据

我们可以通过describe和info方法对整个数据有个大概的情况。describe用于查看数值型数据的分布情况。

data.describe()

Python有趣|数据分析三板斧(内附python学习教程分享)

info方法用于查看各字段的数据类型,以及缺失情况,可用于后面的数据处理。这里我们根据问题,对country和city字段感兴趣,然后发现city缺失,所以后文中需要对其处理。

data.info()

Python有趣|数据分析三板斧(内附python学习教程分享)

数据处理

数据处理,其实就是我们常说的数据预处理(清洗数据),我们都知道,数据大部分情况下,是不干净的(或者不是我们预期的),我们需要处理,清洗,常出现的处理任务如下:

  • 缺失值处理
  • 异常值处理
  • 重复值处理
  • 多表处理
  • 数据转换处理

这些都是需要根据实际情况来处理的。接着,我们就来处理星巴克数据,首先,查看Brand字段的唯一值,发现除了星巴克还有其他商品(可能是同一厂商的,屌丝表示对星巴克一无所知),我们只取星巴克的数据。

Python有趣|数据分析三板斧(内附python学习教程分享)

之前我们用info函数可以查看缺失值,但是我们常用isnull函数,这样可以清楚看出各字段的缺失值都有多少数据。

data.isnull().sum()

Python有趣|数据分析三板斧(内附python学习教程分享)

因为对city字段感兴趣,所以我们查看到底缺失的数据,是哪些,我们可以看出,大部分是埃及的国家(是不是这些国家没有划分城市,还是说没有录入数据)。

data[data['City'].isnull()]

Python有趣|数据分析三板斧(内附python学习教程分享)

接着,我们就处理这些缺失值。缺失值一般的处理方法有两种:

  • 删掉
  • 填充

这里我们选择就用国家字段填充到City字段上。

def fill_na(x):

return x

data['City'] = data['City'].fillna(fill_na(data['State/Province']))

data[data['Country']=='EG']

在数据分析中,我发现小美国的数据把台湾当做了国家,这我能忍么?直接重新赋值,换成了中国(中国一点都不能少)。整个的数据处理就到这了。

data['Country'][data['Country'] == 'TW'] = 'CN'

分析+可视化

在python数据分析中,我常常会把分析和可视化结合在一起,首先我们看看哪些国家星巴克店最多。

通过值计数,看看前10个国家。当然,数据分析中也会有各种方法:

  • 值计数
  • 数据分组聚合
  • 透视表

country_count = data['Country'].value_counts()[0:10]

接着,我们就用pandas可视化(后两期再介绍功能更强大的可视化方法)。可以看出:美国和中国的是最多的。

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['simhei'] #指定默认字体

plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题

%matplotlib inline

country_count.plot(kind='bar')

Python有趣|数据分析三板斧(内附python学习教程分享)

接着同样的方法,看看哪些城市的星巴克最多?默默发现,上海市最多(竟然不是美国城市),果然中国市场很大嘛。

Python有趣|数据分析三板斧(内附python学习教程分享)

最后,筛选出中国地区的数据,看看中国城市的星巴克数量排名。上海最多,北京第二,上榜的也可以看出都是经济较发达的城市~

china_data = data[data['Country'] == 'CN']

city_count = china_data['City'].value_counts()[0:10]

city_count.plot(kind='barh')

Python有趣|数据分析三板斧(内附python学习教程分享)

下面是为初学者们准备的python电子书籍资料和python入门教程!

Python有趣|数据分析三板斧(内附python学习教程分享)
Python有趣|数据分析三板斧(内附python学习教程分享)

请关注+私信回复:“学习”就可以拿到一份我为大家准备的Python学习资料!

相关推荐