Python 数据分析之 pandas 进阶(一)
导入本篇中使用到的模块:
import numpy as np import pandas as pd from pandas import Series, DataFrame
我们可以调整数据输出框大小以便观察:
pd.set_option('display.width', 200)
一、创建对象
1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
s = pd.Series([1,3,5,np.nan,6,8]) s 0 1 1 3 2 5 3 NaN 4 6 5 8 dtype: float64
2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) dates df DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') A B C D 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 2013-01-06 0.186073 -0.537019 -0.252442 0.530238
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
df2 = pd.DataFrame({'A':1., 'B':pd.Timestamp('20130102'), 'C':pd.Series(1, index=list(range(4)),dtype='float32'), 'D':np.array([3] * 4, dtype='int32'), 'E':pd.Categorical(['test','train', 'test','train']), 'F':'foo' }) df2
4、查看不同列的数据类型:
df2.dtypes A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
5、使用Tab自动补全功能会自动识别所有的属性以及自定义的列
二、查看数据
1.查看Frame中头部和尾部的行:
df.head() A B C D 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528
df.tail(3) A B C D 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 2013-01-06 0.186073 -0.537019 -0.252442 0.530238
2、显示索引、列和底层的numpy数据:
df.index DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')
df.columns Index(['A', 'B', 'C', 'D'], dtype='object')
3、describe()函数对于数据的快速统计汇总:
df.describe() A B C D count 6.000000 6.000000 6.000000 6.000000 mean -0.256300 0.103596 0.283858 0.158536 std 0.854686 1.060269 1.181208 0.973309 min -1.857957 -1.211098 -1.031190 -1.295228 25% -0.412452 -0.477042 -0.429298 -0.395927 50% 0.162550 -0.158711 -0.058369 0.365058 75% 0.214610 0.747641 0.911070 0.630084 max 0.367213 1.683491 2.169802 1.447487
4、对数据的转置(tranverse):
df.T 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 A -1.857957 0.139027 -0.596279 0.367213 0.224122 0.186073 B -0.297110 1.683491 -1.211098 -0.020313 1.003625 -0.537019 C 0.135704 -1.031190 1.169525 2.169802 -0.488250 -0.252442 D 0.199878 1.447487 0.663366 -1.295228 -0.594528 0.530238
5、按轴进行排序:
df.sort_index(axis=1,ascending=False) D C B A 2013-01-01 0.199878 0.135704 -0.297110 -1.857957 2013-01-02 1.447487 -1.031190 1.683491 0.139027 2013-01-03 0.663366 1.169525 -1.211098 -0.596279 2013-01-04 -1.295228 2.169802 -0.020313 0.367213 2013-01-05 -0.594528 -0.488250 1.003625 0.224122 2013-01-06 0.530238 -0.252442 -0.537019 0.186073
6、按值进行排序:
df.sort(columns='B') A B C D 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 2013-01-06 0.186073 -0.537019 -0.252442 0.530238 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 2013-01-02 0.139027 1.683491 -1.031190 1.447487
三、选择数据
以下是将要操作的数组:
df A B C D 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 2013-01-06 0.186073 -0.537019 -0.252442 0.530238
1、获取数据
(1)、选择一个单独的列,这将会返回一个Series:
df['A'] 2013-01-01 -1.857957 2013-01-02 0.139027 2013-01-03 -0.596279 2013-01-04 0.367213 2013-01-05 0.224122 2013-01-06 0.186073 Freq: D, Name: A, dtype: float64
(2)、通过[]进行选择,即:切片
df[0:3] A B C D 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-03 -0.596279 -1.211098 1.169525 0.663366
2、标签选择
(1)、使用标签来获取一个交叉的区域
df.loc[dates[0]] A -1.857957 B -0.297110 C 0.135704 D 0.199878 Name: 2013-01-01 00:00:00, dtype: float64
(2)、通过标签来在多个轴上进行选择
df.loc[:,['A', 'B']] A B 2013-01-01 -1.857957 -0.297110 2013-01-02 0.139027 1.683491 2013-01-03 -0.596279 -1.211098 2013-01-04 0.367213 -0.020313 2013-01-05 0.224122 1.003625 2013-01-06 0.186073 -0.537019
(3)、标签切片
df.loc['20130102':'20130104', ['A','B']] A B 2013-01-02 0.139027 1.683491 2013-01-03 -0.596279 -1.211098 2013-01-04 0.367213 -0.020313
(4)、对于返回的对象进行维度缩减
df.loc['20130102', ['A','B']] A 0.139027 B 1.683491 Name: 2013-01-02 00:00:00, dtype: float64
(5)、获取一个标量
df.loc[dates[0], 'A'] -1.8579571971312099
3、位置选择
(1)、通过传递数值进行位置选择(选择的是行)
df.iloc[3] A 0.367213 B -0.020313 C 2.169802 D -1.295228 Name: 2013-01-04 00:00:00, dtype: float64
(2)、通过数值进行切片
df.iloc[3:5,0:2] A B 2013-01-04 0.367213 -0.020313 2013-01-05 0.224122 1.003625
(3)、通过指定一个位置的列表
df.iloc[[1,2,4],[0,2]] A C 2013-01-02 0.139027 -1.031190 2013-01-03 -0.596279 1.169525 2013-01-05 0.224122 -0.488250
(4)、对行进行切片
df.iloc[1:3,:] A B C D 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-03 -0.596279 -1.211098 1.169525 0.663366
(5)、获取特定的值
df.iloc[1,1] 1.6834910794696132
4、布尔索引
(1)、使用一个单独列的值来选择数据:
df[df.A > 0] A B C D 2013-01-02 0.139027 1.683491 -1.031190 1.447487 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 2013-01-06 0.186073 -0.537019 -0.252442 0.530238
(2)、使用where操作来选择数据:
df[df > 0] A B C D 2013-01-01 NaN NaN 0.135704 0.199878 2013-01-02 0.139027 1.683491 NaN 1.447487 2013-01-03 NaN NaN 1.169525 0.663366 2013-01-04 0.367213 NaN 2.169802 NaN 2013-01-05 0.224122 1.003625 NaN NaN 2013-01-06 0.186073 NaN NaN 0.530238
(3)、使用isin()方法来过滤:
df2 = df.copy() df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three'] df2 A B C D E 2013-01-01 -1.857957 -0.297110 0.135704 0.199878 one 2013-01-02 0.139027 1.683491 -1.031190 1.447487 one 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 two 2013-01-04 0.367213 -0.020313 2.169802 -1.295228 three 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 four 2013-01-06 0.186073 -0.537019 -0.252442 0.530238 three
df2[df2['E'].isin(['two', 'four'])] A B C D E 2013-01-03 -0.596279 -1.211098 1.169525 0.663366 two 2013-01-05 0.224122 1.003625 -0.488250 -0.594528 four
5、设置
(1)、设置一个新的列:
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6)) s1 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64
df['F'] = s1 df A B C D F 2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -1.031190 5 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 2013-01-04 0.367213 -0.020313 2.169802 5 3 2013-01-05 0.224122 1.003625 -0.488250 5 4 2013-01-06 0.186073 -0.537019 -0.252442 5 5
(2)、设置新值
df.at[dates[0],'A'] = 0 #通过标签设置新值 df.iat[0,1] = 0 #通过位置设置新值 df.loc[:, 'D'] = np.array([5] * len(df)) #通过一个numpy数值设置一组新值 df A B C D F 2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -1.031190 5 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 2013-01-04 0.367213 -0.020313 2.169802 5 3 2013-01-05 0.224122 1.003625 -0.488250 5 4 2013-01-06 0.186073 -0.537019 -0.252442 5 5
四、缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。所处理的数组是:
df A B C D F 2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -1.031190 5 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 2013-01-04 0.367213 -0.020313 2.169802 5 3 2013-01-05 0.224122 1.003625 -0.488250 5 4 2013-01-06 0.186073 -0.537019 -0.252442 5 5
1、reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:
df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E']) df1.loc[dates[0]:dates[1], 'E'] = 1 df1 A B C D F E 2013-01-01 0.000000 0.000000 0.135704 5 NaN 1 2013-01-02 0.139027 1.683491 -1.031190 5 1 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 NaN 2013-01-04 0.367213 -0.020313 2.169802 5 3 NaN
2、去掉包含缺失值的行:
df1.dropna(how='any') A B C D F E 2013-01-02 0.139027 1.683491 -1.03119 5 1 1
3、对缺失值进行填充:
df1.fillna(value=5) A B C D F E 2013-01-01 0.000000 0.000000 0.135704 5 5 1 2013-01-02 0.139027 1.683491 -1.031190 5 1 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 5 2013-01-04 0.367213 -0.020313 2.169802 5 3 5
4、对数据进行布尔填充:
pd.isnull(df1) A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
五、合并
pandas提供了大量的方法能够轻松的对Series、DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。
1、Concat
df = pd.DataFrame(np.random.randn(10, 4)) df 0 1 2 3 0 0.680581 1.918851 0.521201 -0.389951 1 0.724157 2.282989 0.648427 -0.827308 2 2.437781 0.232518 1.066197 -0.233117 3 0.038747 3.174875 -1.384120 0.322864 4 -0.835962 1.015841 0.042094 -1.903701 5 0.095194 1.926612 0.512825 0.786349 6 -1.098231 -0.669381 -0.623124 -0.411114 7 -1.229527 -0.738026 0.453683 -2.037488 8 -0.499546 -0.816864 -0.395079 -0.320400 9 0.850367 1.047287 -1.205815 -1.287821
pieces = [df[:3], df[3:7], df[7:]] # break it into pieces pieces [ 0 1 2 3 0 0.680581 1.918851 0.521201 -0.389951 1 0.724157 2.282989 0.648427 -0.827308 2 2.437781 0.232518 1.066197 -0.233117, 0 1 2 3 3 0.038747 3.174875 -1.384120 0.322864 4 -0.835962 1.015841 0.042094 -1.903701 5 0.095194 1.926612 0.512825 0.786349 6 -1.098231 -0.669381 -0.623124 -0.411114, 0 1 2 3 7 -1.229527 -0.738026 0.453683 -2.037488 8 -0.499546 -0.816864 -0.395079 -0.320400 9 0.850367 1.047287 -1.205815 -1.287821]
2、Append将一行连接到一个DataFrame上
df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D']) df A B C D 0 -0.923050 -1.798683 -0.543700 0.983715 1 -0.031082 1.069746 -0.761914 0.142136 2 0.178376 -0.984427 0.270601 0.737754 3 -0.882595 0.057637 -1.027661 -1.829378 4 0.570082 0.210366 0.805305 -1.233238 5 0.442322 0.709155 -0.304849 0.885378 6 -0.218852 0.052263 0.467727 0.832747 7 0.516890 0.005642 -0.990794 -1.624444
s = df.iloc[3] df.append(s, ignore_index=True) A B C D 0 -0.923050 -1.798683 -0.543700 0.983715 1 -0.031082 1.069746 -0.761914 0.142136 2 0.178376 -0.984427 0.270601 0.737754 3 -0.882595 0.057637 -1.027661 -1.829378 4 0.570082 0.210366 0.805305 -1.233238 5 0.442322 0.709155 -0.304849 0.885378 6 -0.218852 0.052263 0.467727 0.832747 7 0.516890 0.005642 -0.990794 -1.624444 8 -0.882595 0.057637 -1.027661 -1.829378
以上代码不想自己试一试吗?
镭矿 raquant提供 jupyter(研究) 在线练习学习 python 的机会,无需安装 python 即可运行 python 程序。
相关推荐
Series是一种类似于一维数组的对象,由一组数据以及一组与之对应的索引组成。 index: 索引序列,必须是唯一的,且与数据的长度相同. 如果没有传入索引参数,则默认会自动创建一个从0~N的整数索引