Kafka源码解析(一)---LogSegment以及Log初始化

我们先回想一下Kafka的日志结构是怎样的?

Kafka 日志对象由多个日志段对象组成,而每个日志段对象会在磁盘上创建一组文件,包括消息日志文件(.log)、位移索引文件(.index)、时间戳索引文件(.timeindex)以及已中止(Aborted)事务的索引文件(.txnindex)。当然,如果你没有使用 Kafka 事务,已中止事务的索引文件是不会被创建出来的。

Kafka源码解析(一)---LogSegment以及Log初始化

下面我们看一下LogSegment的实现情况,具体文件位置是 core/src/main/scala/kafka/log/LogSegment.scala。

LogSegment

LogSegment.scala这个文件里面定义了三个对象:

  • LogSegment class;
  • LogSegment object;
  • LogFlushStats object。LogFlushStats 结尾有个 Stats,它是做统计用的,主要负责为日志落盘进行计时。

我这里贴一下LogSegment.scala这个文件上面的注释,介绍了LogSegment的构成:

A segment of the log. Each segment has two components: a log and an index. The log is a FileRecords containing the actual messages. The index is an OffsetIndex that maps from logical offsets to physical file positions. Each segment has a base offset which is an offset <= the least offset of any message in this segment and > any offset in any previous segment

这段注释清楚的写了每个日志段由两个核心组件构成:日志和索引。每个日志段都有一个起始位置:base offset,而该位移值是此日志段所有消息中最小的位移值,同时,该值却又比前面任何日志段中消息的位移值都大。

LogSegment构造参数

class LogSegment private[log] (val log: FileRecords,
                               val lazyOffsetIndex: LazyIndex[OffsetIndex],
                               val lazyTimeIndex: LazyIndex[TimeIndex],
                               val txnIndex: TransactionIndex,
                               val baseOffset: Long,
                               val indexIntervalBytes: Int,
                               val rollJitterMs: Long,
                               val time: Time) extends Logging { … }

FileRecords是实际保存 Kafka 消息的对象。

lazyOffsetIndex、lazyTimeIndex 和 txnIndex 分别对应位移索引文件、时间戳索引文件、已中止事务索引文件。

baseOffset是每个日志段对象的起始位移,每个 LogSegment 对象实例一旦被创建,它的起始位移就是固定的了,不能再被更改。

indexIntervalBytes 值其实就是 Broker 端参数 log.index.interval.bytes 值,它控制了日志段对象新增索引项的频率。默认情况下,日志段至少新写入 4KB 的消息数据才会新增一条索引项。

time 是用于统计计时的一个实现类。

append

@nonthreadsafe
  def append(largestOffset: Long,
             largestTimestamp: Long,
             shallowOffsetOfMaxTimestamp: Long,
             records: MemoryRecords): Unit = {
    // 判断是否日志段是否为空
    if (records.sizeInBytes > 0) {
      trace(s"Inserting ${records.sizeInBytes} bytes at end offset $largestOffset at position ${log.sizeInBytes} " +
            s"with largest timestamp $largestTimestamp at shallow offset $shallowOffsetOfMaxTimestamp")
      val physicalPosition = log.sizeInBytes()

      if (physicalPosition == 0)
        rollingBasedTimestamp = Some(largestTimestamp)
      // 确保输入参数最大位移值是合法的
      ensureOffsetInRange(largestOffset)

      // append the messages
      // 执行真正的写入
      val appendedBytes = log.append(records)
      trace(s"Appended $appendedBytes to ${log.file} at end offset $largestOffset")
      // Update the in memory max timestamp and corresponding offset.
      // 更新日志段的最大时间戳以及最大时间戳所属消息的位移值属性
      if (largestTimestamp > maxTimestampSoFar) {
        maxTimestampSoFar = largestTimestamp
        offsetOfMaxTimestampSoFar = shallowOffsetOfMaxTimestamp
      }
      // append an entry to the index (if needed)
      // 当已写入字节数超过了 4KB 之后,append 方法会调用索引对象的 append 方法新增索引项,同时清空已写入字节数
      if (bytesSinceLastIndexEntry > indexIntervalBytes) {
        offsetIndex.append(largestOffset, physicalPosition)
        timeIndex.maybeAppend(maxTimestampSoFar, offsetOfMaxTimestampSoFar)
        bytesSinceLastIndexEntry = 0
      }
      bytesSinceLastIndexEntry += records.sizeInBytes
    }
  }

Kafka源码解析(一)---LogSegment以及Log初始化

这个方法主要做了那么几件事:

  1. 判断日志段是否为空,不为空则往下进行操作
  2. 调用ensureOffsetInRange方法,确保输入参数最大位移值是合法的。
  3. 调用 FileRecords 的 append 方法执行真正的写入。
  4. 更新日志段的最大时间戳以及最大时间戳所属消息的位移值属性。
  5. 更新索引项和写入的字节数,日志段每写入 4KB 数据就要写入一个索引项。当已写入字节数超过了 4KB 之后,append 方法会调用索引对象的 append 方法新增索引项,同时清空已写入字节数。

我们下面再看看ensureOffsetInRange方法是怎么校验最大位移的:

private def ensureOffsetInRange(offset: Long): Unit = {
    if (!canConvertToRelativeOffset(offset))
      throw new LogSegmentOffsetOverflowException(this, offset)
  }

这个方法最终会调用到AbstractIndex的toRelative方法中:

private def toRelative(offset: Long): Option[Int] = {
    val relativeOffset = offset - baseOffset
    if (relativeOffset < 0 || relativeOffset > Int.MaxValue)
      None
    else
      Some(relativeOffset.toInt)
  }

可见这个方法会将offset和baseOffset做对比,当offset小于baseOffset或者当offset和baseOffset相减后大于Int的最大值,那么都是异常的情况,那么这时就会抛出LogSegmentOffsetOverflowException异常。

read

def read(startOffset: Long,
           maxSize: Int,
           maxPosition: Long = size,
           minOneMessage: Boolean = false): FetchDataInfo = {
    if (maxSize < 0)
      throw new IllegalArgumentException(s"Invalid max size $maxSize for log read from segment $log")
    // 将位移索引转换成物理文件位置索引
    val startOffsetAndSize = translateOffset(startOffset)

    // if the start position is already off the end of the log, return null
    if (startOffsetAndSize == null)
      return null

    val startPosition = startOffsetAndSize.position
    val offsetMetadata = LogOffsetMetadata(startOffset, this.baseOffset, startPosition)
    
    val adjustedMaxSize =
      if (minOneMessage) math.max(maxSize, startOffsetAndSize.size)
      else maxSize

    // return a log segment but with zero size in the case below
    if (adjustedMaxSize == 0)
      return FetchDataInfo(offsetMetadata, MemoryRecords.EMPTY)

    // calculate the length of the message set to read based on whether or not they gave us a maxOffset
    // 计算要读取的总字节数
    val fetchSize: Int = min((maxPosition - startPosition).toInt, adjustedMaxSize)
    // log.slice读取消息后封装成FetchDataInfo返回
    FetchDataInfo(offsetMetadata, log.slice(startPosition, fetchSize),
      firstEntryIncomplete = adjustedMaxSize < startOffsetAndSize.size)
  }

这段代码中,主要做了这几件事:

  1. 调用 translateOffset 方法定位要读取的起始文件位置 (startPosition)。

    举个例子,假设 maxSize=100,maxPosition=300,startPosition=250,那么 read 方法只能读取 50 字节,因为 maxPosition - startPosition = 50。我们把它和 maxSize 参数相比较,其中的最小值就是最终能够读取的总字节数。

  2. 调用 FileRecords 的 slice 方法,从指定位置读取指定大小的消息集合。

recover

这个方法是恢复日志段,Broker 在启动时会从磁盘上加载所有日志段信息到内存中,并创建相应的 LogSegment 对象实例。在这个过程中,它需要执行一系列的操作。

def recover(producerStateManager: ProducerStateManager, leaderEpochCache: Option[LeaderEpochFileCache] = None): Int = {
    //情况索引文件
    offsetIndex.reset()
    timeIndex.reset()
    txnIndex.reset()
    var validBytes = 0
    var lastIndexEntry = 0
    maxTimestampSoFar = RecordBatch.NO_TIMESTAMP
    try {
      //遍历日志段中所有消息集合
      for (batch <- log.batches.asScala) {
        // 校验
        batch.ensureValid()
        // 校验消息中最后一条消息的位移不能越界
        ensureOffsetInRange(batch.lastOffset)

        // The max timestamp is exposed at the batch level, so no need to iterate the records
        // 获取最大时间戳及所属消息位移
        if (batch.maxTimestamp > maxTimestampSoFar) {
          maxTimestampSoFar = batch.maxTimestamp
          offsetOfMaxTimestampSoFar = batch.lastOffset
        }

        // Build offset index
        // 当已写入字节数超过了 4KB 之后,调用索引对象的 append 方法新增索引项,同时清空已写入字节数
        if (validBytes - lastIndexEntry > indexIntervalBytes) {
          offsetIndex.append(batch.lastOffset, validBytes)
          timeIndex.maybeAppend(maxTimestampSoFar, offsetOfMaxTimestampSoFar)
          lastIndexEntry = validBytes
        }
        // 更新总消息字节数
        validBytes += batch.sizeInBytes()
        // 更新Porducer状态和Leader Epoch缓存
        if (batch.magic >= RecordBatch.MAGIC_VALUE_V2) {
          leaderEpochCache.foreach { cache =>
            if (batch.partitionLeaderEpoch > 0 && cache.latestEpoch.forall(batch.partitionLeaderEpoch > _))
              cache.assign(batch.partitionLeaderEpoch, batch.baseOffset)
          }
          updateProducerState(producerStateManager, batch)
        }
      }
    } catch {
      case  (_: CorruptRecordException | _: InvalidRecordException) =>
        warn("Found invalid messages in log segment %s at byte offset %d: %s. %s"
          .format(log.file.getAbsolutePath, validBytes, e.getMessage, e.getCause))
    }
    // 遍历完后将 遍历累加的值和日志总字节数比较,
    val truncated = log.sizeInBytes - validBytes
    if (truncated > 0)
      debug(s"Truncated $truncated invalid bytes at the end of segment ${log.file.getAbsoluteFile} during recovery")
    //执行日志截断操作
    log.truncateTo(validBytes)
    // 调整索引文件大小
    offsetIndex.trimToValidSize()
    // A normally closed segment always appends the biggest timestamp ever seen into log segment, we do this as well.
    timeIndex.maybeAppend(maxTimestampSoFar, offsetOfMaxTimestampSoFar, skipFullCheck = true)
    timeIndex.trimToValidSize()
    truncated
  }

这个方法主要做了以下几件事:

  1. 清空索引文件
  2. 遍历日吹端中多有消息集合
    1. 校验日志段中的消息
    2. 获取最大时间戳及所属消息位移
    3. 更新索引项
    4. 更新总消息字节数
    5. 更新Porducer状态和Leader Epoch缓存
  3. 执行消息日志索引文件截断
  4. 调整索引文件大小

下面我们进入到truncateTo方法中,看一下截断操作是怎么做的:

public int truncateTo(int targetSize) throws IOException {
    int originalSize = sizeInBytes();
    // 要截断的目标大小不能超过当前文件的大小
    if (targetSize > originalSize || targetSize < 0)
        throw new KafkaException("Attempt to truncate log segment " + file + " to " + targetSize + " bytes failed, " +
                " size of this log segment is " + originalSize + " bytes.");
    //如果目标大小小于当前文件大小,那么执行截断
    if (targetSize < (int) channel.size()) { 
        channel.truncate(targetSize);
        size.set(targetSize);
    }
    return originalSize - targetSize;
}

Kafka 会将日志段当前总字节数和刚刚累加的已读取字节数进行比较,如果发现前者比后者大,说明日志段写入了一些非法消息,需要执行截断操作,将日志段大小调整回合法的数值。

truncateTo

这个方法会将日志段中的数据强制截断到指定的位移处。

def truncateTo(offset: Long): Int = {
  // Do offset translation before truncating the index to avoid needless scanning
  // in case we truncate the full index
  // 将位置值转换成物理文件位置
  val mapping = translateOffset(offset)
  // 移动索引到指定位置
  offsetIndex.truncateTo(offset)
  timeIndex.truncateTo(offset)
  txnIndex.truncateTo(offset)

  // After truncation, reset and allocate more space for the (new currently active) index
  // 因为位置变了,为了节省内存,做一次resize操作
  offsetIndex.resize(offsetIndex.maxIndexSize)
  timeIndex.resize(timeIndex.maxIndexSize)

  val bytesTruncated = if (mapping == null) 0 else log.truncateTo(mapping.position)
  // 如果调整到初始位置,那么重新记录一下创建时间
  if (log.sizeInBytes == 0) {
    created = time.milliseconds
    rollingBasedTimestamp = None
  }
  //调整索引项
  bytesSinceLastIndexEntry = 0
  //调整最大的索引位置
  if (maxTimestampSoFar >= 0)
    loadLargestTimestamp()
  bytesTruncated
}
  1. 将位置值转换成物理文件位置
  2. 移动索引到指定位置,位移索引文件、时间戳索引文件、已中止事务索引文件等位置
  3. 将索引做一次resize操作,节省内存空间
  4. 调整日志段日志位置

我们到OffsetIndex的truncateTo方法中看一下:

override def truncateTo(offset: Long): Unit = {
  inLock(lock) {
    val idx = mmap.duplicate
    //根据指定位移返回消息中位移
    val slot = largestLowerBoundSlotFor(idx, offset, IndexSearchType.KEY)

    /* There are 3 cases for choosing the new size
     * 1) if there is no entry in the index <= the offset, delete everything
     * 2) if there is an entry for this exact offset, delete it and everything larger than it
     * 3) if there is no entry for this offset, delete everything larger than the next smallest
     */
    val newEntries =
      //如果没有消息的位移值小于指定位移值,那么就直接从头开始
      if(slot < 0)
        0
      //  跳到执行的位移位置
      else if(relativeOffset(idx, slot) == offset - baseOffset)
        slot
      //  指定位移位置大于消息中所有位移,那么跳到消息位置中最大的一个的下一个位置
      else
        slot + 1
    // 执行位置跳转
    truncateToEntries(newEntries)
  }
}
  1. 根据指定位移返回消息中的槽位。
  2. 如果返回的槽位小于零,说明没有消息位移小于指定位移,所以newEntries返回0。
  3. 如果指定位移在消息位移中,那么返回slot槽位。
  4. 如果指定位移位置大于消息中所有位移,那么跳到消息位置中最大的一个的下一个位置。

讲完了LogSegment之后,我们在来看看Log。

Log

Log 源码结构

Kafka源码解析(一)---LogSegment以及Log初始化

Log.scala定义了 10 个类和对象,图中括号里的 C 表示 Class,O 表示 Object。

我们主要看的是Log类:

Log类的定义

class Log(@volatile var dir: File,
          @volatile var config: LogConfig,
          @volatile var logStartOffset: Long,
          @volatile var recoveryPoint: Long,
          scheduler: Scheduler,
          brokerTopicStats: BrokerTopicStats,
          val time: Time,
          val maxProducerIdExpirationMs: Int,
          val producerIdExpirationCheckIntervalMs: Int,
          val topicPartition: TopicPartition,
          val producerStateManager: ProducerStateManager,
          logDirFailureChannel: LogDirFailureChannel) extends Logging with KafkaMetricsGroup {
……
}

主要的属性有两个dir和logStartOffset,分别表示个日志所在的文件夹路径,也就是主题分区的路径以及日志的当前最早位移。

Kafka源码解析(一)---LogSegment以及Log初始化

在kafka中,我们用Log End Offset(LEO)表示日志下一条待插入消息的位移值,也就是日志的末端位移。

Log Start Offset表示日志当前对外可见的最早一条消息的位移值。

再看看其他属性:

@volatile private var nextOffsetMetadata: LogOffsetMetadata = _
    @volatile private var highWatermarkMetadata: LogOffsetMetadata = LogOffsetMetadata(logStartOffset)
    private val segments: ConcurrentNavigableMap[java.lang.Long, LogSegment] = new ConcurrentSkipListMap[java.lang.Long, LogSegment]
    @volatile var leaderEpochCache: Option[LeaderEpochFileCache] = None

nextOffsetMetadata基本上等同于LEO。

highWatermarkMetadata是分区日志高水位值。

segments保存了分区日志下所有的日志段信息。

Leader Epoch Cache 对象保存了分区 Leader 的 Epoch 值与对应位移值的映射关系。

Log类初始化代码

locally {
    val startMs = time.milliseconds

    // create the log directory if it doesn‘t exist
    //创建分区日志路径
    Files.createDirectories(dir.toPath)
    //初始化Leader Epoch Cache
    initializeLeaderEpochCache()
    //加载所有日志段对象
    val nextOffset = loadSegments()

    /* Calculate the offset of the next message */
    nextOffsetMetadata = LogOffsetMetadata(nextOffset, activeSegment.baseOffset, activeSegment.size)

    leaderEpochCache.foreach(_.truncateFromEnd(nextOffsetMetadata.messageOffset))

    logStartOffset = math.max(logStartOffset, segments.firstEntry.getValue.baseOffset)

    // The earliest leader epoch may not be flushed during a hard failure. Recover it here.
    //更新Leader Epoch Cache,清除无效数据
    leaderEpochCache.foreach(_.truncateFromStart(logStartOffset))

    // Any segment loading or recovery code must not use producerStateManager, so that we can build the full state here
    // from scratch.
    if (!producerStateManager.isEmpty)
      throw new IllegalStateException("Producer state must be empty during log initialization")
    loadProducerState(logEndOffset, reloadFromCleanShutdown = hasCleanShutdownFile)

    info(s"Completed load of log with ${segments.size} segments, log start offset $logStartOffset and " +
      s"log end offset $logEndOffset in ${time.milliseconds() - startMs} ms")
  }

这个代码里面主要做了这几件事:

Kafka源码解析(一)---LogSegment以及Log初始化

Leader Epoch暂且不表,我们看看loadSegments是如何加载日志段的。

loadSegments

private def loadSegments(): Long = {
    // first do a pass through the files in the log directory and remove any temporary files
    // and find any interrupted swap operations
    //移除上次 Failure 遗留下来的各种临时文件(包括.cleaned、.swap、.deleted 文件等)
    val swapFiles = removeTempFilesAndCollectSwapFiles()

    // Now do a second pass and load all the log and index files.
    // We might encounter legacy log segments with offset overflow (KAFKA-6264). We need to split such segments. When
    // this happens, restart loading segment files from scratch.
    //清空所有日志段对象,并且再次遍历分区路径,重建日志段 segments Map 并删除无对应日志段文件的孤立索引文件。
    retryOnOffsetOverflow {
      // In case we encounter a segment with offset overflow, the retry logic will split it after which we need to retry
      // loading of segments. In that case, we also need to close all segments that could have been left open in previous
      // call to loadSegmentFiles().
      //先清空日志段信息
      logSegments.foreach(_.close())
      segments.clear()
      //从文件中装载日志段
      loadSegmentFiles()
    }

    // Finally, complete any interrupted swap operations. To be crash-safe,
    // log files that are replaced by the swap segment should be renamed to .deleted
    // before the swap file is restored as the new segment file.
    //完成未完成的 swap 操作
    completeSwapOperations(swapFiles)

    if (!dir.getAbsolutePath.endsWith(Log.DeleteDirSuffix)) {
      val nextOffset = retryOnOffsetOverflow {
        recoverLog()
      }

      // reset the index size of the currently active log segment to allow more entries
      activeSegment.resizeIndexes(config.maxIndexSize)
      nextOffset
    } else {
       if (logSegments.isEmpty) {
          addSegment(LogSegment.open(dir = dir,
            baseOffset = 0,
            config,
            time = time,
            fileAlreadyExists = false,
            initFileSize = this.initFileSize,
            preallocate = false))
       }
      0
    }
  }

这个方法首先会调用removeTempFilesAndCollectSwapFiles方法移除上次 Failure 遗留下来的各种临时文件(包括.cleaned、.swap、.deleted 文件等)。

然后它会清空所有日志段对象,并且再次遍历分区路径,重建日志段 segments Map 并删除无对应日志段文件的孤立索引文件。

待执行完这两次遍历之后,它会完成未完成的 swap 操作,即调用 completeSwapOperations 方法。等这些都做完之后,再调用 recoverLog 方法恢复日志段对象,然后返回恢复之后的分区日志 LEO 值。

removeTempFilesAndCollectSwapFiles

private def removeTempFilesAndCollectSwapFiles(): Set[File] = {
    // 在方法内部定义一个名为deleteIndicesIfExist的方法,用于删除日志文件对应的索引文件
    def deleteIndicesIfExist(baseFile: File, suffix: String = ""): Unit = {
      info(s"Deleting index files with suffix $suffix for baseFile $baseFile")
      val offset = offsetFromFile(baseFile)
      Files.deleteIfExists(Log.offsetIndexFile(dir, offset, suffix).toPath)
      Files.deleteIfExists(Log.timeIndexFile(dir, offset, suffix).toPath)
      Files.deleteIfExists(Log.transactionIndexFile(dir, offset, suffix).toPath)
    }

    var swapFiles = Set[File]()
    var cleanFiles = Set[File]()
    var minCleanedFileOffset = Long.MaxValue

    for (file <- dir.listFiles if file.isFile) {
      if (!file.canRead)
        throw new IOException(s"Could not read file $file")
      val filename = file.getName
      //如果是以.deleted结尾的文件
      if (filename.endsWith(DeletedFileSuffix)) {
        debug(s"Deleting stray temporary file ${file.getAbsolutePath}")
        // 说明是上次Failure遗留下来的文件,直接删除
        Files.deleteIfExists(file.toPath)
      //  如果是以.cleaned结尾的文件
      } else if (filename.endsWith(CleanedFileSuffix)) {
        minCleanedFileOffset = Math.min(offsetFromFileName(filename), minCleanedFileOffset)
        cleanFiles += file
      //  .swap结尾的文件
      } else if (filename.endsWith(SwapFileSuffix)) {
        // we crashed in the middle of a swap operation, to recover:
        // if a log, delete the index files, complete the swap operation later
        // if an index just delete the index files, they will be rebuilt
        //更改文件名
        val baseFile = new File(CoreUtils.replaceSuffix(file.getPath, SwapFileSuffix, ""))
        info(s"Found file ${file.getAbsolutePath} from interrupted swap operation.")
        //如果该.swap文件原来是索引文件
        if (isIndexFile(baseFile)) {
          // 删除原来的索引文件
          deleteIndicesIfExist(baseFile)
          // 如果该.swap文件原来是日志文件
        } else if (isLogFile(baseFile)) {
          // 删除掉原来的索引文件
          deleteIndicesIfExist(baseFile)
          // 加入待恢复的.swap文件集合中
          swapFiles += file
        }
      }
    }

    // KAFKA-6264: Delete all .swap files whose base offset is greater than the minimum .cleaned segment offset. Such .swap
    // files could be part of an incomplete split operation that could not complete. See Log#splitOverflowedSegment
    // for more details about the split operation.
    // 从待恢复swap集合中找出那些起始位移值大于minCleanedFileOffset值的文件,直接删掉这些无效的.swap文件
    val (invalidSwapFiles, validSwapFiles) = swapFiles.partition(file => offsetFromFile(file) >= minCleanedFileOffset)
    invalidSwapFiles.foreach { file =>
      debug(s"Deleting invalid swap file ${file.getAbsoluteFile} minCleanedFileOffset: $minCleanedFileOffset")
      val baseFile = new File(CoreUtils.replaceSuffix(file.getPath, SwapFileSuffix, ""))
      deleteIndicesIfExist(baseFile, SwapFileSuffix)
      Files.deleteIfExists(file.toPath)
    }

    // Now that we have deleted all .swap files that constitute an incomplete split operation, let‘s delete all .clean files
    // 清除所有待删除文件集合中的文件
    cleanFiles.foreach { file =>
      debug(s"Deleting stray .clean file ${file.getAbsolutePath}")
      Files.deleteIfExists(file.toPath)
    }
    // 最后返回当前有效的.swap文件集合
    validSwapFiles
  }
  1. 定义了一个内部方法deleteIndicesIfExist,用于删除日志文件对应的索引文件。
  2. 遍历文件列表删除遗留文件,并筛选出.cleaned结尾的文件和.swap结尾的文件。
  3. 根据minCleanedFileOffset删除无效的.swap文件。
  4. 最后返回当前有效的.swap文件集合

处理完了removeTempFilesAndCollectSwapFiles方法,然后进入到loadSegmentFiles方法中。

loadSegmentFiles

private def loadSegmentFiles(): Unit = {
    // load segments in ascending order because transactional data from one segment may depend on the
    // segments that come before it
    for (file <- dir.listFiles.sortBy(_.getName) if file.isFile) {
      //如果不是以.log结尾的文件,如.index、.timeindex、.txnindex
      if (isIndexFile(file)) {
        // if it is an index file, make sure it has a corresponding .log file
        val offset = offsetFromFile(file)
        val logFile = Log.logFile(dir, offset)
        // 确保存在对应的日志文件,否则记录一个警告,并删除该索引文件
        if (!logFile.exists) {
          warn(s"Found an orphaned index file ${file.getAbsolutePath}, with no corresponding log file.")
          Files.deleteIfExists(file.toPath)
        }
      //  如果是以.log结尾的文件
      } else if (isLogFile(file)) {
        // if it‘s a log file, load the corresponding log segment
        val baseOffset = offsetFromFile(file)
        val timeIndexFileNewlyCreated = !Log.timeIndexFile(dir, baseOffset).exists()
        // 创建对应的LogSegment对象实例,并加入segments中
        val segment = LogSegment.open(dir = dir,
          baseOffset = baseOffset,
          config,
          time = time,
          fileAlreadyExists = true)

        try segment.sanityCheck(timeIndexFileNewlyCreated)
        catch {
          case _: NoSuchFileException =>
            error(s"Could not find offset index file corresponding to log file ${segment.log.file.getAbsolutePath}, " +
              "recovering segment and rebuilding index files...")
            recoverSegment(segment)
          case e: CorruptIndexException =>
            warn(s"Found a corrupted index file corresponding to log file ${segment.log.file.getAbsolutePath} due " +
              s"to ${e.getMessage}}, recovering segment and rebuilding index files...")
            recoverSegment(segment)
        }
        addSegment(segment)
      }
    }
  }
  1. 遍历文件目录
  2. 如果文件是索引文件,那么检查一下是否存在相应的日志文件。
  3. 如果是日志文件,那么创建对应的LogSegment对象实例,并加入segments中。

接下来调用completeSwapOperations方法处理有效.swap 文件集合。

completeSwapOperations

private def completeSwapOperations(swapFiles: Set[File]): Unit = {
    // 遍历所有有效.swap文件
    for (swapFile <- swapFiles) {
      val logFile = new File(CoreUtils.replaceSuffix(swapFile.getPath, SwapFileSuffix, ""))
      val baseOffset = offsetFromFile(logFile)// 拿到日志文件的起始位移值
      // 创建对应的LogSegment实例
      val swapSegment = LogSegment.open(swapFile.getParentFile,
        baseOffset = baseOffset,
        config,
        time = time,
        fileSuffix = SwapFileSuffix)
      info(s"Found log file ${swapFile.getPath} from interrupted swap operation, repairing.")
      // 执行日志段恢复操作
      recoverSegment(swapSegment)

      // We create swap files for two cases:
      // (1) Log cleaning where multiple segments are merged into one, and
      // (2) Log splitting where one segment is split into multiple.
      //
      // Both of these mean that the resultant swap segments be composed of the original set, i.e. the swap segment
      // must fall within the range of existing segment(s). If we cannot find such a segment, it means the deletion
      // of that segment was successful. In such an event, we should simply rename the .swap to .log without having to
      // do a replace with an existing segment.
      // 确认之前删除日志段是否成功,是否还存在老的日志段文件
      val oldSegments = logSegments(swapSegment.baseOffset, swapSegment.readNextOffset).filter { segment =>
        segment.readNextOffset > swapSegment.baseOffset
      }
      // 如果存在,直接把.swap文件重命名成.log
      replaceSegments(Seq(swapSegment), oldSegments.toSeq, isRecoveredSwapFile = true)
    }
  }
  1. 遍历所有有效.swap文件;
  2. 创建对应的LogSegment实例;
  3. 执行日志段恢复操作,恢复部分的源码已经在LogSegment里面讲了;
  4. 把.swap文件重命名成.log;

最后是执行recoverLog部分代码。

recoverLog

private def recoverLog(): Long = {
    // if we have the clean shutdown marker, skip recovery
    // 如果不存在以.kafka_cleanshutdown结尾的文件。通常都不存在
    if (!hasCleanShutdownFile) {
      // okay we need to actually recover this log
      // 获取到上次恢复点以外的所有unflushed日志段对象
      val unflushed = logSegments(this.recoveryPoint, Long.MaxValue).toIterator
      var truncated = false
      // 遍历这些unflushed日志段
      while (unflushed.hasNext && !truncated) {
        val segment = unflushed.next
        info(s"Recovering unflushed segment ${segment.baseOffset}")
        val truncatedBytes =
          try {
            // 执行恢复日志段操作
            recoverSegment(segment, leaderEpochCache)
          } catch {
            case _: InvalidOffsetException =>
              val startOffset = segment.baseOffset
              warn("Found invalid offset during recovery. Deleting the corrupt segment and " +
                s"creating an empty one with starting offset $startOffset")
              segment.truncateTo(startOffset)
          }
        if (truncatedBytes > 0) {// 如果有无效的消息导致被截断的字节数不为0,直接删除剩余的日志段对象
          // we had an invalid message, delete all remaining log
          warn(s"Corruption found in segment ${segment.baseOffset}, truncating to offset ${segment.readNextOffset}")
          removeAndDeleteSegments(unflushed.toList, asyncDelete = true)
          truncated = true
        }
      }
    }
    // 这些都做完之后,如果日志段集合不为空
    if (logSegments.nonEmpty) {
      val logEndOffset = activeSegment.readNextOffset
      if (logEndOffset < logStartOffset) {
        warn(s"Deleting all segments because logEndOffset ($logEndOffset) is smaller than logStartOffset ($logStartOffset). " +
          "This could happen if segment files were deleted from the file system.")
        removeAndDeleteSegments(logSegments, asyncDelete = true)
      }
    }
    // 这些都做完之后,如果日志段集合为空了
    if (logSegments.isEmpty) {
      // no existing segments, create a new mutable segment beginning at logStartOffset
      // 至少创建一个新的日志段,以logStartOffset为日志段的起始位移,并加入日志段集合中
      addSegment(LogSegment.open(dir = dir,
        baseOffset = logStartOffset,
        config,
        time = time,
        fileAlreadyExists = false,
        initFileSize = this.initFileSize,
        preallocate = config.preallocate))
    }
    // 更新上次恢复点属性,并返回
    recoveryPoint = activeSegment.readNextOffset
    recoveryPoint
  }

相关推荐