Python处理alist文件——稀疏矩阵的读取和存储

众所周知,alist文件是一种保存稀疏矩阵格式,常用于保存LDPC码的校验矩阵与生成矩阵。
Matrix File Formats?- TU Kaiserslautern提供了一个信道编码的数据库,并给出了数据库中信道编码的校验矩阵的存储方法和格式。
这种格式也见于alist format
Database of Channel Codes and ML Simulation Results从这里可以下载校验矩阵的alist文件。

读取alist文件中保存的矩阵,将稀疏矩阵保存为alist格式,有以下三种python方案(其中前两种,矩阵的行和列设定是一致的):

  1. LDPC encode ,alist2(H&G) · Issue #3 · supermihi/lpdec
  2. bp_osd/src_python at master · quantumgizmos/bp_osd
  3. Deep-learning-for-channel-encoding-and-decoding/Encoder.py at master · s-serenity/Deep-learning-for-channel-encoding-and-decoding

要注意的是,可能保存或读写的是想获得的稀疏矩阵的转置,在应用以上的脚本时,根据自己的需要和判断,决定加不加.T
最适合Matrix File Formats?- TU Kaiserslautern的python实现

import numpy as np
import scipy.sparse as sps


# 校验矩阵的读取
def alistToNumpy(lines):
    """Converts a parity-check matrix in AList format to a 0/1 numpy array. The argument is a
    list-of-lists corresponding to the lines of the AList format, already parsed to integers
    if read from a text file.
    The AList format is introduced on http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html.
    This method supports a "reduced" AList format where lines 3 and 4 (containing column and row
    weights, respectively) and the row-based information (last part of the Alist file) are omitted.
    Example:
        alistToNumpy([[3,2], [2, 2], [1,1,2], [2,2], [1], [2], [1,2], [1,2,3,4]])
        array([[1, 0, 1],
               [0, 1, 1]])
    """
    nCols, nRows = lines[0]
    if len(lines[2]) == nCols and len(lines[3]) == nRows:
        startIndex = 4
    else:
        startIndex = 2
    matrix = np.zeros((nRows, nCols), dtype=np.int)
    for col, nonzeros in enumerate(lines[startIndex:startIndex + nCols]):
        for rowIndex in nonzeros:
            if rowIndex != 0:
                matrix[rowIndex - 1, col] = 1
    return matrix

def save_alist(name, mat, j=None, k=None):

    H=np.copy(mat)
    # H=H.T

    ‘‘‘
    Function converts parity check matrix into the format required for the LDPC decoder
    ‘‘‘

    if j is None:
        j=int(max(H.sum(axis=0)))


    if k is None:
        k=int(max(H.sum(axis=1)))


    m, n = H.shape # rows, cols
    f = open(name, ‘w‘)
    print(n, m, file=f)
    print(j, k, file=f)

    for col in range(n):
        print( int(H[:, col].sum()), end=" ", file=f)
    print(file=f)
    for row in range(m):
        print( int(H[row, :].sum()), end=" ", file=f)
    print(file=f)

    for col in range(n):
        for row in range(m):
            if H[row, col]:
                print( row+1, end=" ", file=f)
        print(file=f)

    for row in range(m):
        for col in range(n):
            if H[row, col]:
                print(col+1, end=" ", file=f)
        print(file=f)
    f.close()
    

def alist2sparse(file_H):
# reads binary parity check matrix in "alist" format from file
# Example 
#        H = alist2sparse(‘A‘);   % A is the ascii file in alist format 

    with open(file_H) as f:
        lines = f.readlines()
        new_lines = []
        for line in lines:
            new_lines.append(list(map(int, line.split())))
    H_matrix = alistToNumpy(new_lines)
    return H_matrix


def test_save_alist():
    
    hamming_matrix=np.array([[1,0,0,1,1,0,1],
                             [0,1,0,1,0,1,1],
                             [0,0,1,0,1,1,1]])

    save_alist("hamming_d_3.alist",hamming_matrix)

def test_alist2sparse():
    H=alist2sparse(‘hamming_d_3.alist‘)
    print(H)
if __name__=="__main__":
#     main()
    test_save_alist()
    test_alist2sparse()

相关推荐