Redis,Memcache,MongoDb的特点与区别

Redis

Redis 简介

 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库。

 Redis 与其他 key - value 缓存产品有以下三个特点:

  • Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
  • Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
  • Redis支持数据的备份,即master-slave模式的数据备份。

 Redis 优势

  • 性能极高 – Redis能读的速度是110000次/s,写的速度是81000次/s 。
  • 丰富的数据类型 – Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
  • 原子 – Redis的所有操作都是原子性的,意思就是要么成功执行要么失败完全不执行。单个操作是原子性的。多个操作也支持事务,即原子性,通过MULTI和EXEC指令包起来。
  • 丰富的特性 – Redis还支持 publish/subscribe, 通知, key 过期等等特性。

优点

  1. 支持多种数据结构,如 string(字符串)、 list(双向链表)、dict(hash表)、set(集合)、zset(排序set)、

  2. 支持持久化操作,可以进行aof及rdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失  的手段。

  3. 支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。

  4. 单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。

  5. 支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。

  6. 支持简单的事务需求,但业界使用场景很少,并不成熟。

缺点

  1. Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
  2. 支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。
  3. Redis在string类型上会消耗较多内存,可以使用dict(hash表)压缩存储以降低内存耗用。

 Memcache

优点

  1. Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key、value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。
  2. 支持直接配置为session handle。

缺点

  1. 只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。
  2. 无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。
  3. 无法进行数据同步,不能将MC中的数据迁移到其他MC实例中。
  4. Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。

MongoDB

优点

  1. 更高的写负载,MongoDB拥有更高的插入速度。
  2. 处理很大的规模的单表,当数据表太大的时候可以很容易的分割表。
  3. 高可用性,设置M-S不仅方便而且很快,MongoDB还可以快速、安全及自动化的实现节点(数据中心)故障转移。
  4. 快速的查询,MongoDB支持二维空间索引,比如管道,因此可以快速及精确的从指定位置获取数据。MongoDB在启动后会将数据库中的数据以文件映射的方式加载到内存中。如果内存资源相当丰富的话,这将极大地提高数据库的查询速度。
  5. 非结构化数据的爆发增长,增加列在有些情况下可能锁定整个数据库,或者增加负载从而导致性能下降,由于MongoDB的弱数据结构模式,添加1个新字段不会对旧表格有任何影响,整个过程会非常快速。

缺点

  1. 不支持事务。
  2. MongoDB占用空间过大 。
  3. MongoDB没有成熟的维护工具。

Redis、Memcache和MongoDB的区别

1.性能

三者的性能都比较高,总的来讲:Memcache和Redis差不多,要高于MongoDB。

2.便利性

memcache数据结构单一。
redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数。
mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。

3,存储空间

redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)。
memcache可以修改最大可用内存,采用LRU算法。
mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起。

4.可用性

redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡。
Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。
mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5.可靠性

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响。
memcache不支持,通常用在做缓存,提升性能。
MongoDB从1.8版本开始采用binlog方式支持持久化的可靠性。

6.一致性

Memcache 在并发场景下,用cas保证一致性。
redis事务支持比较弱,只能保证事务中的每个操作连续执行。
mongoDB不支持事务。

7.数据分析

mongoDB内置了数据分析的功能(mapreduce),其他两者不支持。

8.应用场景

redis:数据量较小的更性能操作和运算上。
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)。

Mongodb:主要解决海量数据的访问效率问题

原文链接:https://www.cnblogs.com/sunzhiqi/p/10869655.html

相关推荐