浅谈pandas筛选出表中满足另一个表所有条件的数据方法
今天记录一下pandas筛选出一个表中满足另一个表中所有条件的数据。例如:
list1 结构:名字,ID,颜色,数量,类型。
list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']]
list2结构:名字,类型,颜色。
list2 = [['a','03',255],['a','06',481]]
如何在list1中找出所有与list2中匹配的元素?要得到下面的结果:list = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03']]。
首先将两个list转化为dataframe.
list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']] df1=pd.DataFrame(list1,columns=["名字","ID","颜色","数量","类型"]) list2 = [['a','03',255],['a','06',481]] df2=pd.DataFrame(list2,columns=["名字","类型","颜色"])
数据结构如下:
然后利用pandas.merge函数将其进行内连接。
这个函数的语法是:
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)。这函数连接方式和sql的连接类似,由参数how来控制。
最后的代码如下:
import pandas as pd list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']] df1=pd.DataFrame(list1,columns=["名字","ID","颜色","数量","类型"]) list2 = [['a','03',255],['a','06',481]] df2=pd.DataFrame(list2,columns=["名字","类型","颜色"]) df=pd.merge(df1,df2,how='inner',on=["名字","类型","颜色"],right_index=True) df.sort_index(inplace=True) print(df)
返回结果按照左表的顺序输出:
相关推荐
Series是一种类似于一维数组的对象,由一组数据以及一组与之对应的索引组成。 index: 索引序列,必须是唯一的,且与数据的长度相同. 如果没有传入索引参数,则默认会自动创建一个从0~N的整数索引