Redis存储键值方式详解

redis是一个存储键值对的内存数据库,其存储键值的方式和Java中的HashMap相似。表征redis数据库的结构体是redisDb (在server.h文件中),redis服务器默认有16个数据库,编号从0到15。

typedef struct redisDb {
    dict *dict;                /* 键空间 */
    dict *expires;              /* 过期键空间 */
    dict *blocking_keys;        /* 客户端在等待的键 (BLPOP) */
    dict *ready_keys;          /* 接收到 push 的阻塞键 */
    dict *watched_keys;        /* WATCHED keys for MULTI/EXEC CAS */
    struct evictionPoolEntry *eviction_pool;    /* Eviction pool of keys */
    int id;                    /* Database ID */
    long long avg_ttl;          /* Average TTL, just for stats */
} redisDb;

dict 中存储的是 key -> value,而expires存储的 key -> 过期时间

dict是dict.h文件中定义的结构体:

typedef struct dict {
    dictType *type;
    void *privdata;
    dictht ht[2];
    long rehashidx; /* rehashing not in progress if rehashidx == -1 */
    unsigned long iterators; /* number of iterators currently running */
} dict;

typedef struct dictht {
    dictEntry **table;
    unsigned long size; //table的大小
    unsigned long sizemask;
    unsigned long used; //table中键值对的数量
} dictht;

typedef struct dictEntry {
    void *key;
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next;
} dictEntry;

dict可以类比为java中的HashMap,dictEntry对应java.util.HashMap.Entry<K, V>,稍微不同的是,dict对entry的table做了简单的封装(即dictht),而且dict中有两个table用于rehash。

分析dict的dictReplace(dict.c文件中),类似于HashMap的put:

/* Add or Overwrite:
 * Add an element, discarding the old value if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, *existing, auxentry;

    /* Try to add the element. If the key
    * does not exists dictAdd will suceed. */
    entry = dictAddRaw(d,key,&existing);
    if (entry) {
        dictSetVal(d, entry, val);
        return 1;
    }

    /* Set the new value and free the old one. Note that it is important
    * to do that in this order, as the value may just be exactly the same
    * as the previous one. In this context, think to reference counting,
    * you want to increment (set), and then decrement (free), and not the
    * reverse. */
    auxentry = *existing;
    dictSetVal(d, existing, val);
    dictFreeVal(d, &auxentry);
    return 0;
}

dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
    int index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
    * the element already exists. */
    if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry.
    * Insert the element in top, with the assumption that in a database
    * system it is more likely that recently added entries are accessed
    * more frequently. */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    entry = zmalloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
    ht->used++;

    /* Set the hash entry fields. */
    dictSetKey(d, entry, key);
    return entry;
}

主要逻辑在dictAddRaw中,也是先取得table中index,然后使用头插法插入到table的链表中。

如果dict处于rehash状态(即rehashidx !=  -1),则在插入的时候,先调用_dictRehashStep,对于rehash中的dict,使用的table是ht[1]。

static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

int dictRehash(dict *d, int n) {
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    if (!dictIsRehashing(d)) return 0;

    while(n-- && d->ht[0].used != 0) {
        dictEntry *de, *nextde;

        /* Note that rehashidx can't overflow as we are sure there are more
        * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) {
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {
            unsigned int h;

            nextde = de->next;
            /* Get the index in the new hash table */
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
        }
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht[0].used == 0) {
        zfree(d->ht[0].table);
        d->ht[0] = d->ht[1];
        _dictReset(&d->ht[1]);
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

从代码中可以看出:rehashidx标记了ht[0]中正在rehash的链表的index。

那么,在什么情况下,redis会对dict进行rehash呢?

调用栈: _dictKeyIndex -> _dictExpandIfNeeded -> dictExpand。在计算键的index时,会判断是否需要扩展dict,如果需要扩展,则把dict的rehashidx置为0。


static int _dictKeyIndex(dict *d, const void *key, unsigned int hash, dictEntry **existing)
{
    unsigned int idx, table;
    dictEntry *he;
    if (existing) *existing = NULL;

    /* Expand the hash table if needed */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return -1;
    for (table = 0; table <= 1; table++) {
        idx = hash & d->ht[table].sizemask;
        /* Search if this slot does not already contain the given key */
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key)) {
                if (existing) *existing = he;
                return -1;
            }
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return idx;
}

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK;

    /* If the hash table is empty expand it to the initial size. */
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
    * table (global setting) or we should avoid it but the ratio between
    * elements/buckets is over the "safe" threshold, we resize doubling
    * the number of buckets. */
    if (d->ht[0].used >= d->ht[0].size &&
        (dict_can_resize ||
        d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
        return dictExpand(d, d->ht[0].used*2);
    }
    return DICT_OK;
}

/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
{
    dictht n; /* the new hash table */
    unsigned long realsize = _dictNextPower(size);

    /* the size is invalid if it is smaller than the number of
    * elements already inside the hash table */
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    /* Rehashing to the same table size is not useful. */
    if (realsize == d->ht[0].size) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
    * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

从数据结构的角度来看,redis的dict和java的HashMap很像,区别在于rehash:HashMap在resize时是一次性拷贝的,然后使用新的数组,而dict维持了2个dictht,平常使用ht[0],一旦开始rehash则使用ht[0]和ht[1],rehash被分摊到每次的dictAdd和dictFind等操作中。

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    unsigned int h, idx, table;

    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) { //会遍历d->ht[0]和d->ht[1]
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key))
                return he; //找到即返回
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

redis为什么要如此设计?

试想一下,如果和java的HashMap一样,redis也是一次性拷贝,那么当这个dict非常大时,拷贝就会比较耗时,而在这段时间内,redis就无法对外提供服务了。

 这种设计增加了复杂度,开始rehash后,dict的数据分散在ht[0]和ht[1]中,对于查询(dictFind)和删除(dictDelete)和设置(dictReplace),则会遍历ht[0]和ht[1]。

相关推荐