Hadoop 入门教程

Hadoop 是一个大数据应用平台,提供了大数据存储 (HDFS) 和大数据操作 (Mapreduce) 的支持,本文先介绍了 Hadoop 相关知识,再介绍了 mac 下的 Hadoop 安装和配置使用,最后通过 streaming 使用 python 编写 mapreduce 任务。

动机

Hadoop 作为大数据的平台代表,是每一个从事大数据开发者都值得学习的,刚好我入职后要做的项目是一个 大数据平台相关的内容,所以要提前学习下 Hadoop ,包括 hive 和 MapReduce 等的使用。

目标

Hadoop 自己找资料, 搭建环境,用 streaming,python 写一个 wordcount

Hadoop 介绍

Apache Hadoop is an open-source software framework written in Java for distributed storage and distributed processing of very large data sets on computer clusters built from commodity hardware. All the modules in Hadoop are designed with a fundamental assumption that hardware failures (of individual machines, or racks of machines) are commonplace and thus should be automatically handled in software by the framework.

The term “Hadoop” has come to refer not just to the base modules above, but also to the “ecosystem”, or collection of additional software packages that can be installed on top of or alongside Hadoop, such as Apache Pig, Apache Hive, Apache HBase, Apache Spark, and others.

HDFS(Hadoop Distributed File System)

The Hadoop distributed file system (HDFS) is a distributed, scalable, and portable file-system written in Java for the Hadoop framework. A Hadoop cluster has nominally a single namenode plus a cluster of datanodes, although redundancy options are available for the namenode due to its criticality. Each datanode serves up blocks of data over the network using a block protocol specific to HDFS. The file system uses TCP/IP sockets for communication. Clients use remote procedure call (RPC) to communicate between each other.

MapReduce

Above the file systems comes the MapReduce Engine, which consists of one JobTracker, to which client applications submit MapReduce jobs. The JobTracker pushes work out to available TaskTracker nodes in the cluster, striving to keep the work as close to the data as possible.

过程如下:

Map(k1,v1) → list(k2,v2)

Reduce(k2, list (v2)) → list(v3)

Hive

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data summarization, query, and analysis. While initially developed by Facebook, Apache Hive is now used and developed by other companies such as Netflix. Amazon maintains a software fork of Apache Hive that is included in Amazon Elastic MapReduce on Amazon Web Services.

It provides an SQL-like language called HiveQL with schema on read and transparently converts queries to map/reduce, Apache Tez and Spark jobs.

Hadoop 安装

使用mac Yosemite(10.10.3)

brew insall hadoop
$ hadoop version
    Hadoop 2.7.0
    Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r d4c8d4d4d203c934e8074b31289a28724c0842cf
    Compiled by jenkins on 2015-04-10T18:40Z
    Compiled with protoc 2.5.0
    From source with checksum a9e90912c37a35c3195d23951fd18f
    This command was run using /usr/local/Cellar/hadoop/2.7.0/libexec/share/hadoop/common/hadoop-common-2.7.0.jar

Hadoop 配置

配置 JAVA_HOME

.bashrc.zshrc 中加入 JAVA_HOME 设置:

# set java home
[ -f /usr/libexec/java_home ] && export JAVA_HOME=$(/usr/libexec/java_home)

使设置生效:

source ~/.bashrc  # source ~/.zshrc

配置 ssh

1.生成公钥(如果已经生成,就不用了)

ssh-keygen -t rsa

2.设置 Mac 允许远程登录

“System Preferences” -> “Sharing”. Check “Remote Login”

3.设置免密码登录

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

4.测试本地登录

$ ssh localhost

  Last login: Fri Jun  19 16:30:53 2015

$ exit

Hadoop 配置单节点使用

这里使用单节点做学习使用,配置文件目录 /usr/local/Cellar/hadoop/2.7.0/libexec/etc/hadoop

配置 hdfs-site.xml

设置副本数为 1:

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
</configuration>

配置 core-site.xml

设置文件系统访问的端口:

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://localhost:9000</value>
  </property>
</configuration>

配置 mapred-site.xml

设置 MapReduce 使用的框架:

<configuration>
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
</configuration>

配置 yarn-site.xml

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>

Hadoop 运行

加入启动和停止 Hadoop 的 alias

alias hstart="start-dfs.sh ; start-yarn.sh"
alias hstop="stop-yarn.sh ; stop-dfs.sh"

格式化文件系统

$ hdfs namenode -format

启动 Hadoop

hstart

建立用户空间

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/$(whoami) # 这里是用户

查看 Hadoop 启动的进程情况

jps

正常情况如下:

$ jps
24610 NameNode
24806 SecondaryNameNode
24696 DataNode
25018 NodeManager
24927 ResourceManager
25071 Jps

前面是进程号,后面是进程名

关闭 Hadoop

hstop

Hadoop 实例

运行实例时,当前目录设置为 /usr/local/Cellar/hadoop/2.7.0/libexec

1.上传测试文件到 HDFS 中

hdfs dfs -put etc/hadoop input

把本地 etc/hadoop 下的一些文件上传到 HDFS的 input 中。

可以在刚才建立的用户下查看上传的文件: /user/$(whoami)/input

2.在上传的数据中运行 Hadoop 提供的例子

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep input output 'dfs[a-z.]+'

在上传的数据中使用 MapReduce 运行 grep, 计算以dfs开头的单词出现的次数,结果保存到 output 中。

3.查看运行结果

hdfs dfs -cat output/part-r-00000   # 文件名可以从[Browse Directory](http://localhost:50070/explorer.html#/)中看到:

4	dfs.class
4	dfs.audit.logger
3	dfs.server.namenode.
2	dfs.period
2	dfs.audit.log.maxfilesize
2	dfs.audit.log.maxbackupindex
1	dfsmetrics.log
1	dfsadmin
1	dfs.servers
1	dfs.replication
1	dfs.file

4.删除刚才生成的文件

hdfs dfs -rm -r /user/$(whoami)/input
hdfs dfs -rm -r /user/$(whoami)/output

使用 python 通过 streaming 完成 wordcount

虽然 Hadoop 是使用 Java 开发的,不过支持其它语言开发 MapReduce 程序:

  • Hadoop Streaming is a utility which allows users to create and run jobs with any executables (e.g. shell utilities) as the mapper and/or the reducer.
  • Hadoop Pipes is a SWIG-compatible C++ API to implement MapReduce applications (non JNI™ based).

设置 Streaming 变量(方便后面使用)

streaming 在 brew 中的目录是:/usr/local/Cellar/hadoop/2.7.0/libexec/share/hadoop/tools/lib/hadoop-streaming-2.7.0.jar, 通过命令查找:

find ./ -type f -name "*streaming*"

设置为一个变量,方便后面使用:

export STREAM="/usr/local/Cellar/hadoop/2.7.0/libexec/share/hadoop/tools/lib/hadoop-streaming-2.7.0.jar"

编写 Map 和 Reduce 程序

默认是从标准输入中读取数据,输出到标准输出中,调用时可以使用输入输出重定向就可以实现和 Hadoop 交互了, 这应该也就是 Streaming 的含义了,自己写的程序也可以通过管道自己调试。

mapper.py

#!/usr/bin/env python
# filename: mapper.py

import sys

for line in sys.stdin:
    line = line.strip()
    words = line.split()
    for word in words:
        print '%s\t%s' % (word, 1)

给程序加可执行权限:

chmod +x mapper.py

测试下:

$ echo "this is a  test " | ./mapper.py
this	1
is	1
a	1
test	1

reducer.py

#!/usr/bin/env python
# filename:reducer.py

import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
    line = line.strip()
    word, count = line.split('\t', 1)

    try:
        count = int(count)
    except ValueError:
        continue

    if current_word == word:
        current_count += count
    else:
        if current_word:
            print '%s\t%s' % (current_word, current_count)
        current_count = count
        current_word = word

if current_word == word:
    print '%s\t%s' % (current_word, current_count)

给程序加可执行权限:

chmod +x reducer.py

测试下:

$ echo "this is a a a  test test " | ./mapper.py | sort -k1,1 | ./reducer.py
a	3
is	1
test	2
this	1

使用 Hadoop 调用

1.准备数据

2.上传文件到 HDFS

文件要上传到 HDFS 中才能使用 Hadoop 的 MapReduce:

$ hdfs dfs -mkdir /user/$(whoami)/input
$ hdfs dfs -put ./*.txt /user/$(whoami)/input #*

3.运行 MapReduce

$ hadoop jar $STREAM  \
-files ./mapper.py,./reducer.py \
-mapper ./mapper.py \
-reducer ./reducer.py \
-input /user/$(whoami)/input/pg5000.txt,/user/$(whoami)/input/pg4300.txt,/user/$(whoami)/input/pg20417.txt\
 -output /user/$(whoami)/output

4.查看结果

$ hdfs dfs -cat /user/$(whoami)/output/part-00000 | sort -nk 2 | tail
with	4686
it	4981
that	6109
is	7401
in	11867
to	12017
a	12064
and	16904
of	23935
the	42074

说明在正常的书中,介词用得真是相当多的,这些词在很多时候就要去除。

5.改进(使用迭代器和生成器)

使用 yield 可以在需要时再提供数据,在大量占用内存的工作时很有效。

改进的 mapper.py :

#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""

import sys

def read_input(file):
    for line in file:
        # split the line into words
        yield line.split()

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_input(sys.stdin)
    for words in data:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        for word in words:
            print '%s%s%d' % (word, separator, 1)

if __name__ == "__main__":
    main()

改进的 reducer.py :

#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""

from itertools import groupby
from operator import itemgetter
import sys

def read_mapper_output(file, separator='\t'):
    for line in file:
        yield line.rstrip().split(separator, 1)

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_mapper_output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
    #   current_word - string containing a word (the key)
    #   group - iterator yielding all ["&lt;current_word&gt;", "&lt;count&gt;"] items
    for current_word, group in groupby(data, itemgetter(0)):
        try:
            total_count = sum(int(count) for current_word, count in group)
            print "%s%s%d" % (current_word, separator, total_count)
        except ValueError:
            # count was not a number, so silently discard this item
            pass

if __name__ == "__main__":
    main()

查看系统状态的 UI

下面关于Hadoop的文章您也可能喜欢,不妨看看:

相关推荐