走进机器学习世界之TensorFlow.js快速上手
前言
近两年人工智能,机器学习等各种概念漫天飞舞,那人工智能,机器学习,深度学习这些名词之间是什么关系呢?
如果用三个同心圆来解释的话,人工智能是最大的圆,机器学习是中间的圆,深度学习是最小的圆。具体解释就是:
- 机器学习是实现人工智能的一种手段
- 深度学习是实现机器学习的一种技术
今天我们要介绍的TensorFlow.js是由Google的AI团队发布一款机器学习框架,基于DeepLearn.js(已经停止更新)。这款机器学习框架的特点是使用JavaScript语言,在浏览器中就可以使用它提供的各种API来进行建模和训练,并且支持Node.js。所以对于前端来说,是走进机器学习世界最便捷的路径了。
这里有一个利用TensorFlow.js实现的机器学习的小游戏demo,大家可以感受一下。尝试一下
这篇文章基于TensorFlow.js的英文官方文档写成,重点在于TensorFlow.js的入门,关于机器学习更多的知识点可参考Google机器学习课程。
让我们开始吧!
安装
直接引入
第一种方式是通过<script></script>直接引入,在浏览器中运行下面的代码,在控制台中可以看到结果。
<html> <head> <!-- Load TensorFlow.js --> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> </script> <!-- Place your code in the script tag below. You can also use an external .js file --> <script> // Notice there is no 'import' statement. 'tf' is available on the index-page // because of the script tag above. // Define a model for linear regression. const model = tf.sequential(); model.add(tf.layers.dense({units: 1, inputShape: [1]})); // Prepare the model for training: Specify the loss and the optimizer. model.compile({loss: 'meanSquaredError', optimizer: 'sgd'}); // Generate some synthetic data for training. const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]); const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]); // Train the model using the data. model.fit(xs, ys, {epochs: 10}).then(() => { // Use the model to do inference on a data point the model hasn't seen before: // Open the browser devtools to see the output model.predict(tf.tensor2d([5], [1, 1])).print(); }); </script> </head> <body> </body> </html>
npm或yarn
第二种方式是通过npm或yarn将TensorFlow.js的库引入到你的项目中。
yarn add @tensorflow/tfjs npm install @tensorflow/tfjs
你可以在你的main.js中添加如下代码:
import * as tf from '@tensorflow/tfjs'; // Define a model for linear regression. const model = tf.sequential(); model.add(tf.layers.dense({units: 1, inputShape: [1]})); // Prepare the model for training: Specify the loss and the optimizer. model.compile({loss: 'meanSquaredError', optimizer: 'sgd'}); // Generate some synthetic data for training. const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]); const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]); // Train the model using the data. model.fit(xs, ys, {epochs: 10}).then(() => { // Use the model to do inference on a data point the model hasn't seen before: model.predict(tf.tensor2d([5], [1, 1])).print(); });
如果不懂上面代码的含义不要着急,继续看后面的一些基础概念和用法。
Tensor和Variable
Tensor和Variable是TensorFlow.js中最基础的两种数据形式。那他们到底是什么意思呢?
Tensor在谷歌翻译中是“张量”的意思,“张量”这个词是数学和物理中的一个术语,我们暂且不深究它的意思,你只需要记住,Tensor(张量)是不可变的,类似于const,一旦定义就不能改变它的值。
Variable就很容易理解了,它是变量的意思,顾名思义,它的值是可以改变的。
总之,Tensor(张量)不可变,Variable(变量)可变。
Tensor
张量通常是一个0到多维的数组,构造张量时会用到shape属性,用来规定这是一个几行几列的数组。
请看下面构造一个张量的例子。shape用来规定这个张量是两行三列的数组,然后可以看到最后的输出,我们得到了一个两行三列的二维数组。
// 2x3 Tensor const shape = [2, 3]; // 2 rows, 3 columns const a = tf.tensor([1.0, 2.0, 3.0, 10.0, 20.0, 30.0], shape); a.print(); // print Tensor values // Output: [[1 , 2 , 3 ], // [10, 20, 30]]
也可以用下面这种方式,直接表示这是一个两行三列的二维数组。
// The shape can also be inferred: const b = tf.tensor([[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]]); b.print(); // Output: [[1 , 2 , 3 ], // [10, 20, 30]]
然而实际上,我们通常使用 tf.scalar, tf.tensor1d, tf.tensor2d, tf.tensor3d 和 tf.tensor4d来构造张量。tf.scalar是构造一个零维数组,也就是一个数字,tf.tensor1d是构造一位数组,tf.tensor2d是构造二维数组,以此类推。例如:
const c = tf.tensor2d([[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]]); c.print(); // Output: [[1 , 2 , 3 ], // [10, 20, 30]]
或者使用tf.zeros生成全是0的数组,tf.ones生成全是1的数组,例如:
// 3x5 Tensor with all values set to 0 const zeros = tf.zeros([3, 5]); // Output: [[0, 0, 0, 0, 0], // [0, 0, 0, 0, 0], // [0, 0, 0, 0, 0]]
Variable
而Variable(变量)只能通过Tensor(张量)生成。我们可以使用assign给变量重新赋值。例如:
const initialValues = tf.zeros([5]); const biases = tf.variable(initialValues); // initialize biases biases.print(); // output: [0, 0, 0, 0, 0] const updatedValues = tf.tensor1d([0, 1, 0, 1, 0]); biases.assign(updatedValues); // update values of biases biases.print(); // output: [0, 1, 0, 1, 0]
Operations
TensorFlow.js提供了各种向量运算的API,我们可以称这些为Operations。下面是张量平方和张量相加的例子:
const d = tf.tensor2d([[1.0, 2.0], [3.0, 4.0]]); const d_squared = d.square(); d_squared.print(); // Output: [[1, 4 ], // [9, 16]] const e = tf.tensor2d([[1.0, 2.0], [3.0, 4.0]]); const f = tf.tensor2d([[5.0, 6.0], [7.0, 8.0]]); const e_plus_f = e.add(f); e_plus_f.print(); // Output: [[6 , 8 ], // [10, 12]]
而且TensorFlow.js还提供了链式运算,请看例子:
const sq_sum = e.add(f).square(); sq_sum.print(); // Output: [[36 , 64 ], // [100, 144]] // All operations are also exposed as functions in the main namespace, // so you could also do the following: const sq_sum = tf.square(tf.add(e, f));
Model
上面我们介绍了张量,变量和一些基础运算,下面我们引入“Model(模型)”这个概念。
模型就是一个函数,给定这个函数特定的输入,会返回特定的输出。
所以请记住,模型就是一个函数而已。
我们来看一个定义模型的例子, 以下代码构造了一个 y = a x ^ 2 + b x + c 的函数表达式,给定一个x,我们会得到一个y。
代码中tf.tidy()看不懂请忽略,我们将在下一节介绍,它只是用来清除内存。
// Define function function predict(input) { // y = a * x ^ 2 + b * x + c // More on tf.tidy in the next section return tf.tidy(() => { const x = tf.scalar(input); const ax2 = a.mul(x.square()); const bx = b.mul(x); const y = ax2.add(bx).add(c); return y; }); } // Define constants: y = 2x^2 + 4x + 8 const a = tf.scalar(2); const b = tf.scalar(4); const c = tf.scalar(8); // Predict output for input of 2 const result = predict(2); result.print() // Output: 24
但是通常,我们会使用一个更高级的API去构造模型,那就是用 tf.model 的形式,这里的model只是模型的总称,并没有 tf.modal 这个方法。TensorFlow中最常用的是 tf.sequential,例如:
const model = tf.sequential(); model.add( tf.layers.simpleRNN({ units: 20, recurrentInitializer: 'GlorotNormal', inputShape: [80, 4] }) ); const optimizer = tf.train.sgd(LEARNING_RATE); model.compile({optimizer, loss: 'categoricalCrossentropy'}); model.fit({x: data, y: labels});
上面代码中一定有很多你不理解的地方,比如什么是 tf.layer?什么是 tf.train.sgd?这里可以先忽略细节,先从总体上体会这些基本概念,关于 tf.train.sg 等我们在后面的文章介绍。如果你忍不住,就自己去查吧!给你 官方API文档 好了。
内存管理
TensorFlow.js使用GPU来加速运算,所以合理地释放内存是一件很必要的事情。TensorFlow.js提供了dispose函数来释放内存,请看例子:
const x = tf.tensor2d([[0.0, 2.0], [4.0, 6.0]]); const x_squared = x.square(); x.dispose(); x_squared.dispose();
但是通常实际中我们会面对很多的张量和操作,这时候 tf.tidy 更加方便,因为它是批量释放内存,请看例子:
// tf.tidy takes a function to tidy up after const average = tf.tidy(() => { // tf.tidy will clean up all the GPU memory used by tensors inside // this function, other than the tensor that is returned. // // Even in a short sequence of operations like the one below, a number // of intermediate tensors get created. So it is a good practice to // put your math ops in a tidy! const y = tf.tensor1d([1.0, 2.0, 3.0, 4.0]); const z = tf.ones([4]); return y.sub(z).square().mean(); }); average.print() // Output: 3.5
使用 tf.tidy 有两个要点:
- 传递给 tf.tidy 的函数必须是同步的。
- tf.tidy 不会清理变量,你只能通过 dispose 手动清理。
总结
关于 TensorFlow.js 的基础概念介绍完了,但是这只是我们探索机器学习的一个工具而已,具体的实践还需要更多的学习,后面有时间我也会跟大家一起学习,并及时分享。