Luncene和Solr介绍
由于搜索引擎功能在门户社区中对提高用户体验有着重在门户社区中涉及大量需要搜索引擎的功能需求,目前在实现搜索引擎的方案上有集中方案可供选择:
- 基于Lucene自己进行封装实现站内搜索。工作量及扩展性都较大,不采用。
- 调用Google、Baidu的API实现站内搜索。同第三方搜索引擎绑定太死,无法满足后期业务扩展需要,暂时不采用。
- 基于Compass+Lucene实现站内搜索。适合于对数据库驱动的应用数据进行索引,尤其是替代传统的like ‘%expression%’来实现对varchar或clob等字段的索引,对于实现站内搜索是一种值得采纳的方案。但在分布式处理、接口封装上尚需要自己进行一定程度的封装,暂时不采用。
- 基于Solr实现站内搜索。封装及扩展性较好,提供了较为完备的解决方案,因此在门户社区中采用此方案,后期加入Compass方案。
Lucene 简介
Lucene 是一个基于 Java 的全文信息检索工具包,它不是一个完整的搜索应用程序,而是为你的应用程序提供索引和搜索功能。Lucene 目前是 Apache Jakarta 家族中的一个开源项目。也是目前最为流行的基于 Java 开源全文检索工具包。
目前已经有很多应用程序的搜索功能是基于 Lucene 的,比如 Eclipse 的帮助系统的搜索功能。Lucene 能够为文本类型的数据建立索引,所以你只要能把你要索引的数据格式转化的文本的,Lucene 就能对你的文档进行索引和搜索。比如你要对一些 HTML 文档,PDF 文档进行索引的话你就首先需要把 HTML 文档和 PDF 文档转化成文本格式的,然后将转化后的内容交给 Lucene 进行索引,然后把创建好的索引文件保存到磁盘或者内存中,最后根据用户输入的查询条件在索引文件上进行查询。不指定要索引的文档的格式也使 Lucene 能够几乎适用于所有的搜索应用程序。
图 1 表示了搜索应用程序和 Lucene 之间的关系,也反映了利用 Lucene 构建搜索应用程序的流程:
图 1. 搜索应用程序和 Lucene 之间的关系
索引和搜索
索引是现代搜索引擎的核心,建立索引的过程就是把源数据处理成非常方便查询的索引文件的过程。为什么索引这么重要呢,试想你现在要在大量的文档中搜索含有某个关键词的文档,那么如果不建立索引的话你就需要把这些文档顺序的读入内存,然后检查这个文章中是不是含有要查找的关键词,这样的话就会耗费非常多的时间,想想搜索引擎可是在毫秒级的时间内查找出要搜索的结果的。这就是由于建立了索引的原因,你可以把索引想象成这样一种数据结构,他能够使你快速的随机访问存储在索引中的关键词,进而找到该关键词所关联的文档。Lucene 采用的是一种称为反向索引(inverted index)的机制。反向索引就是说我们维护了一个词 / 短语表,对于这个表中的每个词 / 短语,都有一个链表描述了有哪些文档包含了这个词 / 短语。这样在用户输入查询条件的时候,就能非常快的得到搜索结果。我们将在本系列文章的第二部分详细介绍 Lucene 的索引机制,由于 Lucene 提供了简单易用的 API,所以即使读者刚开始对全文本进行索引的机制并不太了解,也可以非常容易的使用 Lucene 对你的文档实现索引。
对文档建立好索引后,就可以在这些索引上面进行搜索了。搜索引擎首先会对搜索的关键词进行解析,然后再在建立好的索引上面进行查找,最终返回和用户输入的关键词相关联的文档。
还不过瘾,看看分割线中关于Lucene的更多相关内容:
--------------------------------------分割线 --------------------------------------
--------------------------------------分割线 --------------------------------------
Lucene 的详细介绍:请点这里
Lucene 的下载地址:请点这里
Solr简介
Solr是一个基于Lucene的Java搜索引擎服务器。Solr 提供了层面搜索、命中醒目显示并且支持多种输出格式(包括 XML/XSLT 和 JSON 格式)。它易于安装和配置,而且附带了一个基于 HTTP 的管理界面。Solr已经在众多大型的网站中使用,较为成熟和稳定。Solr 包装并扩展了 Lucene,所以Solr的基本上沿用了Lucene的相关术语。更重要的是,Solr 创建的索引与 Lucene 搜索引擎库完全兼容。通过对Solr 进行适当的配置,某些情况下可能需要进行编码,Solr 可以阅读和使用构建到其他 Lucene 应用程序中的索引。此外,很多 Lucene 工具(如Nutch、 Luke)也可以使用Solr 创建的索引。
Solr 的详细介绍:请点这里
Solr 的下载地址:请点这里