Pig实战

1. pig简介

2. 安装pig

3. 实战pig

4. 深入pig

5. 参考资料及代码下载 

<1>. Pig简介 

 pig是hadoop项目的一个拓展项目, 用以简化hadoop编程(简化的程度超乎想象啊),并且提供一个更高层次抽象的数据处理能力,同时能够保持hadoop的简单和可靠性。

<2>. 安装pig 

2.1 下载pig:[点击下载]pig安装包

2.2 解压下载完成的pig安装包:

 xuqiang@ubuntu:~/hadoop/src/pig$ tar zxvf pig-0.8.1.tar.gz 

2.3 设置环境变量

 xuqiang@ubuntu:~$ vim .bashrc 

export PATH=~/hadoop/src/pig/pig-0.8.1/bin/:$PATH
export PIG_HOME=~/hadoop/src/pig/pig-0.8.1/
export HADOOP_CONF_DIR=~/hadoop/src/hadoop-0.21.0/conf
export PIG_CLASSPATH=~/hadoop/src/hadoop-0.21.0/conf
这里需要说明的是pig是能够运行在两种模式下:local模式和mapreduce模式,变量HADOOP_CONF_DIR主要是为了在mapreduce模式下使用。

 为了使新设置的环境变量生效,使用如下命令:

xuqiang@ubuntu:~$ source .bash_profile 
测试一下pig的安装是否正确:

 xuqiang@ubuntu:~$ pig -x local

2011-06-05 17:48:49,480 [main] INFO  org.apache.pig.Main - Logging error messages to: /home/xuqiang/pig_1307321329471.log
2011-06-05 17:48:49,926 [main] INFO  org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system at: file:///
grunt> 

此时表明pig已经正确安装。

<3>. Pig实战 

在pig下载的安装包,解压完成了之后,有一个tutorial目录,我们使用里面的数据来开始pig学习。如果tutorial目录下没有存在pigtutorial.tar.gz文件的话,那么需要使用ant来编译出这个文件:

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1$ ant

这时ant将会下载依赖的jar的文件,同时将编译出对应版本的pig jar文件。然后进入tutorial目录,执行ant命令:

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1$ cd tutorial/

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1/tutorial$ ant
这时将生成pigtutorial.tar.gz文件,解压该文件形成pigtmp的文件夹。该文件夹结构:

 .

|-- excite-small.log
|-- excite.log.bz2
|-- pig.jar
|-- script1-hadoop.pig
|-- script1-local.pig
|-- script2-hadoop.pig
|-- script2-local.pig
`-- tutorial.jar
1 directory, 9 files

我们下面将主要分析excite-small.log文件,该文件的数据结构如下:

UserID TimeStamp SearchQuery

我们首先将excite-small.log加载到一个变量(也称之为alias)中,我们将使用该变量来表示这个数据集:

grunt> log = load 'excite-small.log' as (user, time, query);

注意的是这时pig并没有运行该命令,仅仅是解析了该命令,只有到使用dump命令或者是store命令时pig才会真正执行该命令。dump命令将打印出这个变量的内容,store命令将变量所代表的内容保存到一个文件中。

这时如果想要查看该log的结构:

 grunt> describe log;

log: {user: bytearray,time: bytearray,query: bytearray}

这是如果我们想要查看该log文件的前4行的话:

grunt> lmt = limit log 4;

grunt> dump lmt;  

这时将打印出log文件的前四行数据。 

<4>. 深入pig 

4.1 Utility and file commands

Pig实战 

4.2 Data read/write operators 

Pig实战 

4.3 Diagnostic operators诊断操作

 Pig实战

4.4 Data type and schemes

 pig中有6个基本数据类型和3个复合数据类型,基本数据类型如下:

Pig实战 

复合数据类型: 

Pig实战

pig中数据模型中能够允许数据类型的嵌套,类似于xml/json格式。

4.5  Expression and functions

pig能够支持常见运算符。

Pig实战 

同时在pig中提供了一些内建函数。

Pig实战 

这里我们没有给出示例,将在下面给出示例。 

4.6 Retional operators

首先编写两个数据文件A:

0,1,2

1,3,4

数据文件B:

0,5,2

1,7,8
运行pig:

 xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1/tutorial/pigtmp$ pig -x local

2011-06-05 18:46:54,039 [main] INFO  org.apache.pig.Main - Logging error messages to: /home/xuqiang/hadoop/src/pig/pig-0.8.1/tutorial/pigtmp/pig_1307324814030.log
2011-06-05 18:46:54,324 [main] INFO  org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system at: file:///
grunt> 

加载数据A:

 grunt> a = load 'A' using PigStorage(',') as (a1:int, a2:int, a3:int);

加载数据B:

 grunt> b = load 'B' using PigStorage(',') as (b1:int, b2:int, b3:int);

求a,b的并集:

grunt> c = union a, b;

 grunt> dump c;    

(0,5,2)

(1,7,8)
(0,1,2)
(1,3,4)

将c分割为d和e,其中d的第一列数据值为0,e的第一列的数据为1($0表示数据集的第一列):

grunt> split c into d if $0 == 0, e if $0 == 1;

查看d:

grunt> dump d;   

(0,1,2)

(0,5,2)
查看e:

 (1,3,4)

(1,7,8)

选择c中的一部分数据:

grunt> f = filter c by $1 > 3;
查看数据f:

 grunt> dump f;

(0,5,2)
(1,7,8)
对数据进行分组:
grunt> g = group c by $2;

查看g:

 grunt> dump g;

 (2,{(0,1,2),(0,5,2)})

(4,{(1,3,4)})
(8,{(1,7,8)})
当然也能够将所有的元素集合到一起:

 grunt> h = group c all;

grunt> dump h;  

 (all,{(0,1,2),(1,3,4),(0,5,2),(1,7,8)})

查看h中元素个数:

 grunt> i = foreach h generate COUNT($1);

查看元素个数:

grunt> dump i;

这里可能出现Could not resolve counter using imported: [, org.apache.pig.built in., org.apache.pig.impl.builtin. ]的情况,这是需要使用register命令来注册pig对应的jar版本。

接下俩试一下jon操作:

grunt> j = join a by $2, b by $2;
该操作类似于sql中的连表查询,这是的条件是$2 == $2。

取出c的第二列$1和$1 * $2,将这两列保存在k中:

 grunt> k = foreach c generate $1, $1 * $2;

查看k的内容:

 grunt> dump k; 

 (5,10)

(7,56)
(1,2)
(3,12)

4.7  Working with UDF(user defined function)

pig能够支持两种类型的UDFs:eval和load/store,其中load/store的自定义函数主要是用来加载和保存特定的数据格式;eval自定义函数主要用来进行常规的数据转换。

1. eval

如果想要实现自定义的eval类型的函数,那么基本的做法是首先编写一个类继承自EvalFunc<T>这个抽象类,同时需要重写这个类的一方法:

abstract public T exec(Tuple input) throws IOException; 

该方法传入的类型是Tuple类型。

如果调用udf时使用的是:udf(ARG1, ARG2);那么调用input.get(0)将得到ARG1,同理input.get(1)得到的是ARG2,input.getSize()得到传递的参数的数量,这里就是2.

下面我们就开始编写udf UPPER.java,将UPPER.java文件保存到myudfs目录下:

package myudfs;

importjava.io.IOException;

importorg.apache.pig.EvalFunc;

importorg.apache.pig.data.Tuple;

importorg.apache.pig.impl.util.WrappedIOException;

publicclassUPPERextendsEvalFunc<String>

{

publicStringexec(Tupleinput)throwsIOException{

if(input==null||input.size()==0)

returnnull;

try{

Stringstr=(String)input.get(0);

returnstr.toUpperCase();

}catch(Exceptione){

throwWrappedIOException.wrap("Caughtexceptionprocessinginputrow",e);

}

}

}

编译该文件,同时生成该jar文件:

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1/myudfs$ javac -cp ../pig.jar UPPER.java

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1/myudfs$ cd ..

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1$ jar -cf myudfs.jar myudfs
准备student_data文件:
student1,1,1

studetn2,2,2

student3,3,3

student4,4,4

 在pig中测试该udf:

xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1$ pig -x local

注册该udf:

grunt> register myudfs.jar

加载数据: 

grunt> A = load 'student_data' using PigStorage(',') as (name:chararray, age:int,gpa:double);
grunt> B = FOREACH A GENERATE myudfs.UPPER(name);
grunt> dump B;
这时将输出:
(STUDENT1)

(STUDETN2)

(STUDENT3)

(STUDENT4)

<5>. 参考资料及代码下载 

 http://pig.apache.org/docs/r0.8.1/udf.html#How+to+Write+a+Simple+Eval+Function 

<Hadoop In Action> 

Pig实战

作者: qiang.xu 发表于 2011-06-06 13:23 原文链接

相关推荐