【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~
前言
pyecharts 是一个用于生成 Echarts 图表的Python库。Echarts是百度开源的一个数据可视化 JS 库,可以生成一些非常酷炫的图表。
Pyecharts在1.x版本之后迎来重大更新,与老版本(0.5X)已是两个完全不同的版本,所以很多小伙伴在使用Pyecharts出现了类似‘pyecharts‘ has no attribute ‘xxx‘
的报错,那是因为你安装了1.x的版本却使用了0.5x的调用方法。
- 当然如果你更习惯使用0.5X版本的可以通过如下语句来进行安装:
pip install pyecharts==0.5.11
- 安装1.x版本(仅支持Python 3.6+):
pip install pyecharts
本文将会介绍Pyecharts1.x版本的使用方法,本文所有语句均基于v1.6.2
,通过以下语句查询使用pyecharts版本:
import pyecharts print(pyecharts.__version__)
基本使用
链式调用
pyecharts在v1.x之后支持链式调用,具体语句如下:
from pyecharts.charts import Bar from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] # 1.x版本支持链式调用 bar = (Bar() .add_xaxis(cate) .add_yaxis('电商渠道', data1) .add_yaxis('门店', data2) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) ) # 在jupyter notebook总渲染 bar.render_notebook()
单独调用
不习惯链式调用的开发者依旧可以单独调用方法。
# 单独调用 bar = Bar() bar.add_xaxis(cate) bar.add_yaxis('电商渠道', data1) bar.add_yaxis('门店', data2) bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) bar.render_notebook()
全局配置
可以通过全局配置(.set_global_opts()
:)控制以下区域
使用示例如下:
""" 全局配置项使用示例: 1. 标题 & 副标题 2. 关闭图例 3. 显示工具箱 """ bar = (Bar() .add_xaxis(cate) .add_yaxis('电商渠道', data1) .add_yaxis('门店', data2) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"), toolbox_opts=opts.ToolboxOpts(), legend_opts=opts.LegendOpts(is_show=False)) ) bar.render_notebook()
系列配置
可以通过系列配置(.set_series_opts()
)控制图表中的文本,线样式,标记等,使用示例如下:
""" 系列配置项使用示例: 1. 不显示数值 2. 标记每个系列的最大值 """ bar = (Bar() .add_xaxis(cate) .add_yaxis('电商渠道', data1) .add_yaxis('门店', data2) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),])) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) ) bar.render_notebook()
基本图表
饼图
from pyecharts.charts import Pie from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data = [153, 124, 107, 99, 89, 46] pie = (Pie() .add('', [list(z) for z in zip(cate, data)], radius=["30%", "75%"], rosetype="radius") .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) ) pie.render_notebook()
折线图
from pyecharts.charts import Line from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] """ 折线图示例: 1. is_smooth 折线 OR 平滑 2. markline_opts 标记线 OR 标记点 """ line = (Line() .add_xaxis(cate) .add_yaxis('电商渠道', data1, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")])) .add_yaxis('门店', data2, is_smooth=True, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", coord=[cate[2], data2[2]], value=data2[2])])) .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题")) ) line.render_notebook()
漏斗图
from pyecharts.charts import Funnel from pyecharts import options as opts # 示例数据 cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功'] data = [30398, 15230, 10045, 8109, 5698] """ 漏斗图示例: 1. sort_控制排序,默认降序; 2. 标签显示位置 """ funnel = (Funnel() .add("用户数", [list(z) for z in zip(cate, data)], sort_='ascending', label_opts=opts.LabelOpts(position="inside")) .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-基本示例", subtitle="我是副标题")) ) funnel.render_notebook()
热力图
from pyecharts.charts import HeatMap from pyecharts import options as opts from pyecharts.faker import Faker import random # 示例数据 data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)] heat = (HeatMap() .add_xaxis(Faker.clock) .add_yaxis("访客数", Faker.week, data, label_opts=opts.LabelOpts(is_show=True, position="inside")) .set_global_opts( title_opts=opts.TitleOpts(title="HeatMap-基本示例", subtitle="我是副标题"), visualmap_opts=opts.VisualMapOpts(), legend_opts=opts.LegendOpts(is_show=False)) ) heat.render_notebook()
日历图
from pyecharts.charts import Calendar from pyecharts import options as opts import random import datetime # 示例数据 begin = datetime.date(2019, 1, 1) end = datetime.date(2019, 12, 31) data = [[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)] for i in range((end - begin).days + 1)] """ 日历图示例: """ calendar = ( Calendar() .add("微信步数", data, calendar_opts=opts.CalendarOpts(range_="2019")) .set_global_opts( title_opts=opts.TitleOpts(title="Calendar-基本示例", subtitle="我是副标题"), legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( max_=25000, min_=1000, orient="horizontal", is_piecewise=True, pos_top="230px", pos_left="100px", ) ) ) calendar.render_notebook()
地理系图表
from pyecharts import options as opts from pyecharts.charts import Map import random province = ['广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏'] data = [(i, random.randint(50, 150)) for i in province] _map = ( Map() .add("销售额", data, "china") .set_global_opts( title_opts=opts.TitleOpts(title="Map-基本示例"), legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True), ) ) _map.render_notebook()
地理热点图
from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType import random province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃'] data = [(i, random.randint(50, 150)) for i in province] geo = (Geo() .add_schema(maptype="湖北") .add("门店数", data, type_=ChartType.HEATMAP) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( visualmap_opts=opts.VisualMapOpts(), legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts(title="Geo-湖北热力地图")) ) geo.render_notebook()
3D散点图
from pyecharts import options as opts from pyecharts.charts import Scatter3D from pyecharts.faker import Faker import random data = [[random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)] for _ in range(1000)] scatter3D = (Scatter3D() .add("", data) .set_global_opts( title_opts=opts.TitleOpts("Scatter3D-基本示例"), visualmap_opts=opts.VisualMapOpts(range_color=Faker.visual_color)) ) scatter3D.render_notebook()
其他特性
xy轴翻转
from pyecharts.charts import Bar from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] bar = (Bar() .add_xaxis(cate) .add_yaxis('电商渠道', data1) .add_yaxis('门店', data2) .set_global_opts(title_opts=opts.TitleOpts(title="XY轴翻转-基本示例", subtitle="我是副标题")) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .reversal_axis() ) bar.render_notebook()
组合图表
from pyecharts import options as opts from pyecharts.charts import Map, Bar, Grid from pyecharts.globals import ChartType, ThemeType import random province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃'] data = [324, 125, 145, 216, 241, 244, 156, 278, 169] bar = (Bar() .add_xaxis(province) .add_yaxis('营业额', data) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="Grid-Bar") ) ) line = (Line() .add_xaxis(province) .add_yaxis('营业额', data, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")])) .set_global_opts(title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%")) ) grid = ( Grid() .add(bar, grid_opts=opts.GridOpts(pos_bottom="60%")) .add(line, grid_opts=opts.GridOpts(pos_top="60%")) ) grid.render_notebook()
主题设置
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.globals import ThemeType # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] """ 主题设置: 默认white """ bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC)) .add_xaxis(cate) .add_yaxis('电商渠道', data1) .add_yaxis('门店', data2) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),])) .set_global_opts(title_opts=opts.TitleOpts(title="Theme-ROMANTIC")) ) bar.render_notebook()
时间轴
from pyecharts import options as opts from pyecharts.charts import Bar, Timeline from pyecharts.globals import ThemeType import random # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] tl = Timeline() for i in range(2015, 2020): bar = ( Bar() .add_xaxis(cate) .add_yaxis("线上", [random.randint(50, 150) for _ in cate]) .add_yaxis("门店", [random.randint(100, 200) for _ in cate]) .set_global_opts(title_opts=opts.TitleOpts("手机品牌{}年营业额".format(i))) ) tl.add(bar, "{}年".format(i)) tl.render_notebook()
航线图
from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType, ThemeType import requests r = requests.get('https://echarts.baidu.com/examples/data-gl/asset/data/flights.json') data = r.json() city = ['Beijing'] airports_code = [] geo = Geo(init_opts=opts.InitOpts(theme=ThemeType.DARK)) for i, airport in enumerate(data['airports']): if airport[1] in city: geo.add_coordinate(i, airport[3], airport[4]) airports_code.append(i) route = [(x, y) for _, x, y in data['routes'] if x in airports_code] geo.add_schema(maptype="world", itemstyle_opts=opts.ItemStyleOpts()) geo.add("geo", route, is_large = True, symbol_size=0, type_='lines', is_polyline=True, effect_opts=opts.EffectOpts(symbol='pin', symbol_size=1, trail_length=1, color="rgba(255,69,0,0.9)"), linestyle_opts=opts.LineStyleOpts(curve=0.2, width=0.2, color='rgb(245,245,245)',opacity=0.05) ) geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) geo.set_global_opts(title_opts=opts.TitleOpts(title="北京发出所有航线"), legend_opts=opts.LegendOpts(is_show=False)) geo.render_notebook()
整理不易,欢迎点赞收藏???
相关推荐
YENCSDN 2020-11-17
lsjweiyi 2020-11-17
houmenghu 2020-11-17
Erick 2020-11-17
HeyShHeyou 2020-11-17
以梦为马不负韶华 2020-10-20
lhtzbj 2020-11-17
夜斗不是神 2020-11-17
pythonjw 2020-11-17
dingwun 2020-11-16
lhxxhl 2020-11-16
坚持是一种品质 2020-11-16
染血白衣 2020-11-16
huavhuahua 2020-11-20
meylovezn 2020-11-20
逍遥友 2020-11-20
weiiron 2020-11-16