什么是TensorFlow?

1.1Tensor的基础

从上面我们已经得知,Tensor(张量)实际上就是一个n维的数组。这就延伸了几个的术语:

  • 阶(秩)
  • 形状

1.1.1阶(秩)

其实上,阶就是平时我们所说的维数

  • 比如我们有一个二维的数组,那么这个阶就是2
  • 比如我们有一个三维的数组,那么这个阶就是3

以前在写Java的时候,可能一般接触到的都是二维的,但在机器学习上就很可能有很高的维度,那维数我们怎么数?很简单,我们数括号就行了。举个例子,我们可能会看到有下面的一个数组输出形式:

[[[9 6]
 [6 9]
 [8 8]
 [7 9]]
 [[6 1]
 [3 5]
 [1 7]
 [9 4]]]

我们直接看第一个括号到第一个数字,有多少个括号就知道了。[[[9可以发现有3个括号,那这个就是一个三维的数组,它的阶(秩)就是3

1.1.2形状

张量的形状可以让我们看到每个维度中元素的数量

比如我们在Java中创建出一个二维的数组:int [][] array = new int[3][4],我们就可以知道这个数组有三行有四列。但如果我们创建出一个多维的数组,单单只用行和列就描述不清了。所以,在TensorFlow一般我们会这样描述:

  • 在维度一上元素的个数有3个,在维度二上元素的个数有4个。
  • 其实说到底还是一个意思,但只是说法变了而已。

如果我们要打印上面数组的形状时,我们可以得到这样的结果:shape = (3,4)。我们再看看第一篇写”机器学习HelloWorld“的时候,再来看看当时打印的结果:shape = (60000, 28, 28)。通过shape我们就可以得到一些信息

  • 当前数组是三维的
  • 在第一维中有60000个元素
  • 在第二维中有28个元素
  • 在第三维中有28个元素

那我们如果拿到一个数组,怎么通过肉眼看他的shape呢?

比如说:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],这个很简单,一眼就可以看出这个是一个二维数组(矩阵),有三行三列。所以shape的结果应该是(3,3)

再来看一个:t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]],从多个括号上我们可以看出,这是三维的。我们先把最外层括号去掉得到的结果是[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]

Ok,到这一步,我们可以理解成有个子数组,于是我们的shape可以先写成shape(3,?,?)

  • 我们从括号上判断一定是三维的,所以肯定是(?,?,?)的。从“子数组”的个数我们将第一个“?”号填充为3

随后,我们继续把外层的括号去除,得到这样的结果:[2], [4], [6],也是有三个元素,于是我们的shape就可以填成shape(3,3,?)

最后,再把括号去掉,我们可以发现只有一个元素,于是最后的结果就是shape(3,3,1)

我们可以看下图来巩固一下上面所说的概念:

什么是TensorFlow?

1.1.3 Tensor数据类型

TensorFlow 在内部将张量表示为基本数据类型的 n维数组,没错的。在一个数组里边,我们总得知道我们的存进去的数据究竟是什么类型

  • 我们可以将任意数据结构序列化为 string 并将其存储在 tf.Tensor 中。通过 tf.cast可以将 tf.Tensor 从一种数据类型转型为另一种。

Tensor的数据类型如下所示:

什么是TensorFlow?

二、特殊的张量

特殊的张量由一下几种:

  • tf.Variable— 变量
  • tf.constant— 常量
  • tf.placeholder—占位符
  • tf.SparseTensor—稀疏张量

这次,我们先来讲讲前三种(比较好理解),分别是变量、常量和占位符。

2.1 常量

常量就是常量的意思,一经创建就不会被改变。(相信大家还是能够理解的)

在TensorFlow中,创建常量的方式十分简单:

a = tf.constant(2)
b = tf.constant(3)

2.2变量

变量也挺好理解的(就将编程语言的概念跟这里类比就好了)。一般来说,我们在训练过程中的参数一般用变量进行存储起来,因为我们的参数会不停的变化。

在TensorFlow创建变量有两种方式:

# 1.使用Variable类来创建

# tf.random_normal 方法返回形状为(1,4)的张量。它的4个元素符合均值为100、标准差为0.35的正态分布。

W = tf.Variable(initial_value=tf.random_normal(shape=(1, 4), mean=100, stddev=0.35), name="W")

b = tf.Variable(tf.zeros([4]), name="b")

# 2.使用get_variable的方式来创建

my_int_variable = tf.get_variable("my_int_variable", [1, 2, 3], dtype=tf.int32,

initializer=tf.zeros_initializer)

值得注意的是:当我们创建完变量以后,我们每次使用之前,都需要为其进行初始化!

tf.global_variables_initializer()

2.3占位符

我最早接触占位符这个概念的时候是在JDBC的时候。因为SQL需要传入的参数才能确定下来,所以我们可能会写出这样的SQL语句:select * from user where id =?

同样地,在TensorFlow占位符也是这么一个概念,可能需要等到运行的时候才把某些变量确定下来,于是我们就有了占位符。

在TensorFlow使用占位符也很简单:

# 文件名需要等到运行的时候才确定下来
train_filenames = tf.placeholder(tf.string, shape=[None])
# ..省略一堆细节
# 运行的时候,通过feed_dict将占位符具体的值给确定下来
feed_dict={train_filenames: training_filenames}

上面的东西说白了在编程语言中都是有的,只是语法变了而已

三、Flow?介绍图和节点

我们将Flow翻译成中文:,所以现在是Tensor流

其实,在TensorFlow中,使用图 (graph) 来表示计算任务。其实TensorFlow默认会给我们一张空白的,一般我们会叫这个为”数据流图“。数据流图由有向边和节点组成,在使用TensorFlow的时候我们会在图中创建各种的节点,而Tensor会在这些节点中流通。所以,就叫做TensorFlow

那有人就会好奇,我们执行什么操作会创建节点呢?在TensorFlow中,节点的类型可以分为三种:

  • 存储节点:有状态的变量操作,通常用于存储模型参数
  • 计算节点:无状态的计算和控制操作,主要负责算法的逻辑或流程的控制
  • 数据节点:数据的占位符操作,用于描述图外输入的数据

看到这里的同学,可能就反应过来了:原来在上面创建的变量、常量和占位符在TensorFlow中都会生成一个节点!对于这类的操作Operation(行为)一般大家会简说成op

所以,op就是在TensorFlow中所执行的一个操作统称而已(有可能是创建变量的操作、也有可能是计算的操作)。在TensorFlow的常见的op有以下:

什么是TensorFlow?

其实说白了就是TensorFlow会给我们一张空白的数据流图,我们往这张数据流图填充(创建节点),从而实现想要效果。

  • 开局一张图,内容全靠编!

什么是TensorFlow?

我们来看看官方的给出数据流图的gif,加深下印象。

  • TensorFlow使用数据流图来表示计算任务
  • TensorFlow使用Tensor来表示数据,Tensor在数据流图中流动。
  • 在TensorFlow中”创建节点、运算“等行为统称为op

什么是TensorFlow?

四、啥是session?

TensorFlow程序通常被组织成一个构建阶段和执行阶段. 在构建阶段, op的执行步骤被描述成一个图. 在执行阶段, 使用会话执行执行图中的op。

  • 注意:因为是有向边,所以只有等到之前的入度节点们的计算状态完成后,当前节点才能执行操作

说白了,就是当我们在编写代码的时候,实际上就是在将TensorFlow给我们的空白图描述成一张我们想要的图。但我们想要运行出图的结果,那就必须通过session来执行。

举个小例子:

import tensorflow as tf
# 创建数据流图:y = W * x + b,其中W和b为存储节点,x为数据节点。
x = tf.placeholder(tf.float32)
W = tf.Variable(1.0)
b = tf.Variable(1.0)
y = W * x + b
# =========如果不使用session来运行,那上面的代码只是一张图。我们通过session运行这张图,得到想要的结果
with tf.Session() as sess:
 tf.global_variables_initializer().run() # Operation.run
 fetch = y.eval(feed_dict={x: 3.0}) # Tensor.eval
 print(fetch) # fetch = 1.0 * 3.0 + 1.0

4.1 Fetch是啥?

Fetch就时候可以在session.run的时候传入多个op(tensor),然后返回多个tensor(如果只传入一个tensor的话,那就是返回一个tensor)

4.2tensor.eval()和Operation.run()

有的同学在查阅资料的时候,发现可能调用的不是session.run,而是tensor.eval()和Operation.run()。其实,他们最后的调用的还是session.run。不同的是session.run可以一次返回多个tensor(通过Fetch)。

什么是TensorFlow?

最后

曾经看到一段话总结得不错:

  • 使用 tensor 表示数据.
  • 使用图 (graph) 来表示计算任务.
  • 在会话(session)中运行图
  • 通过 变量 (Variable) 维护状态.

TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组.

这篇文章简单讲了TensorFlow是啥意思以及一些基础的概念。但我也只是简单以我的理解方式来说了一些常见概念。里头的知识点还是比较多的(比如创建变量的时候一般我们会指定哪些参数….),这些就交由大家去官网、博客、书籍去学习了。

我相信,只要了解了这些概念,那学习一定可以事半功倍!

欢迎工作一到五年的Java工程师朋友们加入Java程序员开发: 721575865

群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

相关推荐