AI 搞了半天只是曲线拟合?贝叶斯网络之父力荐因果关系

人工智能只是优秀的曲线拟合?近两年,关于这一观点的讨论从未停止,图灵奖获得者、贝叶斯网络之父 Judea Pearl 也参与其中,他一直自嘲自己是 AI 社区的反叛者,认为由于人类对智能的真正含义不完全理解而阻碍了人工智能的发展,他曾经在多个场合表达过这样的观点:人工智能领域的技术水平只不过是上一代机器已有功能的增强版:在大量数据中发现隐藏的规律性。所有令人印象深刻的深度学习成果都只是曲线拟合。从语音识别,到图像识别,再到人机对话,难道这些都算不上“智能”,而只是“曲线拟合”的结果?

AI 搞了半天只是曲线拟合?贝叶斯网络之父力荐因果关系

毫无疑问,当下软件在智能层面出现的一系列进步,背后推手正是机器学习与深度学习支撑起的 AI 技术体系。然而,近两年来,越来越多的人开始讨论这样的软件是否具备真正的“智能”。尽管采用人工智能技术的软件确实在不少领域保持着快速发展的势头,但仍然有学者与怀疑论者们表示:这种算法与理想中的智能算法仍有着巨大甚至无法弥合的鸿沟。

什么叫做“智能”?

关于智能的定义,可以追溯到古希腊时代的那群哲学家们。他们当时关注的主要是人类与动物(而非与机器)间的区别。亚里士多德就曾经提到,接受过良好教育思维的一大特征就是能够理解那些自己并不认同的主张。那时的他当然不会想到,自己的格言如今同样适用于区分智能与人。

目前,机器仍然无法独立提出思想或者假设,无法彼此进行测试,也无法根据逻辑推理以及实验结果(即科学方法的核心原理)接受或者拒绝某种论点。尽管不同形式的 AI(例如对抗性网络)可能也会通过互相冲突的方式达成最佳效果,但很少有人会将这种算法推理称为“智能”。

相反,这只是一种在原理层面相当简单的方法:由两套神经网络利用相同的数据集交叉工作,从而获得准确率超越任何单一神经网络的处理模型。当然,这种方法在实现既定目标方面确实表现得更为有效。

人与机器之间的核心智能区别在于定义目标以及在实现目标期间找寻合理性的能力。我们也可以将其描述为区分因果关系的能力,例如某两个事件虽然经常同时发生,但并不代表着其中一个事件导致了另一个事件。在公共话语当中,这类因果关系谬误正是最常见的逻辑错误之一。图灵奖得主、贝叶斯网络之父 Judea Pearl 也认为机器学习和人工智能领域中的待解难题本质上与因果关系有关。

AI:到底是在学习还是在描述?

AI 研究人员之间正在争论的另一个新问题在于,当前的机器学习与深度学习技术是否代表着一种全新的算法推理形式。或者说,这只是对描述性统计与曲线拟合等原有数学技术的进一步延伸。

支持后一种观点的阵营可谓人才济济,Judea Pearl 还亲自写了一本研究因果科学的新书。这项研究,也带来了关于人工智能未来以及深度学习是否能够带来近人类通用智能的讨论。

Pearl 在此前的采访中表达了一些敏锐的观察:

在我深入研究深度学习的过程中,我发现这类算法都停留在关联这个层次上。也就是曲线拟合。这听起来似乎令人不屑,但必须承认,深度学习的所有令人印象深刻的成就,实际就是在数据上拟合出一条曲线。从数学层次的角度来看,无论深度学习模型能够如何熟练地操作数据,以及在操作数据时引入了哪些变量,无论整个过程多么复杂繁琐,其本质仍然只是一种曲线拟合运算。

从本质上讲,深度学习是一种高度通用且极为强大的曲线拟合技术,能够识别出以往无法被发现的模式,推断趋势并针对各类问题给出预测性结果。当然,曲线拟合在表示给定数据集时也存在一定风险,这就是过度拟合。具体来讲,算法可能无法识别数据的正常波动,最终为了拟合度而将噪音视为有效信息。

点击“了解更多”,查看原文内容。

相关推荐