技术 Leader想要什么样的大数据程序员?

​​大数据时代,中国IT环境也将面临重新洗牌,不仅仅是企业,更是程序员们转型可遇而不可求的机遇。相信很多小伙伴选择学习大数据的原因之一就在于,希望能够找到一份满意的工作,除了要求有一定的专业技能外,有这些技能一定能让技术leader眼前一亮。

技术 Leader想要什么样的大数据程序员?

技术 Leader想要什么样的大数据程序员?

1、独当一面的全才

基础条件:扎实的计算机基础、逻辑能力、英文等素质

保障条件:聪明、学习能力强

加分条件:大规模集群开发经验;上层数据应用优化经历;熟悉聚类、分类、推荐、NLP、神经网络等常见算法;会数据处理,还熟悉聚类、分类、推荐、NLP、神经网络等各种常见算法……

2、退而求其次,有配合团队的长板优势

全才难得,退而求其次,针对不同岗位吸收具有不同特长的人才,以追求团队整体配合的平衡,也不失为一个策略。

计算机视觉领域的大数据公司,往往需要自己的团队中同时具备如下特长的成员。比如精通算法的人才,把图像识别相关算法模型调整到极致;工程实力型人才,高性能实现训练好的算法模型,或者帮团队搭建一整套视频图像数据采集、标注、机器学习、自动化测试、产品实现的平台。

即便同一算法工程团队内部,成员的技能侧重点也要合理搭配,以互为补充。比如,有人专注核心算法研究,就要有人擅长业务分析,专注业务算法模型的实现。

因此,对于想转型大数据的普通程序猿来说,梳理清楚自己现有技能对于新团队的价值非常重要,这是促使新团队决定吸收自己的关键。比如,发挥硬件和底层系统工作经历在算法高速实现上的优势,一旦通过自身擅长的技能切入新团队之后,就有了更多横向发展的机会,帮助自己在大数据相关领域建立更强竞争力。

3、相较当前技能水平,扎实的基础和成长空间更被看重

当前技能水平好比是术,而扎实的计算机基础则处于道的层面,诸如Spark等工具性知识通过后期学习便能轻易掌握,而如果缺少了C++/Java基础想进步却绝非易事。比如,如果算法、数据结构比较强,编程语言上对 C++ 理解较深入,在应用层的学习上,就可能会比其他人快很多。

有人将程序猿能力抽象为一个金字塔模型,虽然对计算机语言的精通是每个工程师都注重的能力,但越基础的素养越蕴含了更多的发展潜力。相比单纯苛责当前技能,能利用基础素养胜任一部分基础工作,然后通过1-2年锻炼接受更复杂问题的程序猿,反而更受企业青睐。

千锋不仅仅注重学生的专业技能培训,还注重学生的素质培养,开班第一天起,每节课的课前十分钟分享,锻炼学员的沟通表达能力,在工作中减少沟通成本即是提高工作效率。加上毕业前的就业指导课和专业的素质培养课,帮你规划未来的就业方向,模拟面试,营造真实的面试环境,提高学员的求职成功率。

    大数据学习,千锋有专业的技术指导,是值得每一个小伙伴去学习!​​​​

相关推荐