计算机程序的思维逻辑 (43) - 剖析TreeMap
40节介绍了HashMap,我们提到,HashMap有一个重要局限,键值对之间没有特定的顺序,我们还提到,Map接口有另一个重要的实现类TreeMap,在TreeMap中,键值对之间按键有序,TreeMap的实现基础是排序二叉树,上节我们介绍了排序二叉树的基本概念和算法,本节我们来详细讨论TreeMap。
除了Map接口,因为有序,TreeMap还实现了更多接口和方法,下面,我们先来看TreeMap的用法,然后探讨其内部实现。
基本用法
构造方法
TreeMap有两个基本构造方法:
public TreeMap() public TreeMap(Comparator<? super K> comparator)
第一个为默认构造方法,如果使用默认构造方法,要求Map中的键实现Comparabe接口,TreeMap内部进行各种比较时会调用键的Comparable接口中的compareTo方法。
第二个接受一个比较器对象comparator,如果comparator不为null,在TreeMap内部进行比较时会调用这个comparator的compare方法,而不再调用键的compareTo方法,也不再要求键实现Comparable接口。
应该用哪一个呢?第一个更为简单,但要求键实现Comparable接口,且期望的排序和键的比较结果是一致的,第二个更为灵活,不要求键实现Comparable接口,比较器可以用灵活复杂的方式进行实现。
需要强调的是,TreeMap是按键而不是按值有序,无论哪一种,都是对键而非值进行比较。
除了这两个基本构造方法,TreeMap还有如下构造方法:
public TreeMap(Map<? extends K, ? extends V> m) public TreeMap(SortedMap<K, ? extends V> m)
关于SortedMap接口,它扩展了Map接口,表示有序的Map,它有一个comparator()方法,返回其比较器,待会我们会进一步介绍。
这两个构造方法都是接受一个已有的Map,将其所有键值对添加到当前TreeMap中来,区别在于,第一个构造方法中,比较器会设为null,而第二个,比较器会设为和参数SortedMap中的一样。
接下来,我们来看一些简单的使用TreeMap的例子。
基本例子
代码为:
Map<String, String> map = new TreeMap<>(); map.put("a", "abstract"); map.put("c", "call"); map.put("b", "basic"); map.put("T", "tree"); for(Entry<String,String> kv : map.entrySet()){ System.out.print(kv.getKey()+"="+kv.getValue()+" "); }
创建了一个TreeMap,但只是当做Map使用,不过迭代时,其输出却是按键排序的,输出为:
T=tree a=abstract b=basic c=call
T排在最前面,是因为大写字母都小于小写字母。如果希望忽略大小写呢?可以传递一个比较器,String类有一个静态成员CASE_INSENSITIVE_ORDER,它就是一个忽略大小写的Comparator对象,替换第一行代码为:
Map<String, String> map = new TreeMap<>(String.CASE_INSENSITIVE_ORDER);
输出就会变为:
a=abstract b=basic c=call T=tree
正常排序是从小到大,如果希望逆序呢?可以传递一个不同的Comparator对象,第一行代码可以替换为:
Map<String, String> map = new TreeMap<>(new Comparator<String>(){ @Override public int compare(String o1, String o2) { return o2.compareTo(o1); } });
这样,输出会变为:
c=call b=basic a=abstract T=tree
为什么这样就可以逆序呢?正常排序中,compare方法内,是o1.compareTo(o2),两个对象翻过来,自然就是逆序了,Collections类有一个静态方法reverseOrder()可以返回一个逆序比较器,也就是说,上面代码也可以替换为:
Map<String, String> map = new TreeMap<>(Collections.reverseOrder());
如果希望逆序且忽略大小写呢?第一行可以替换为:
Map<String, String> map = new TreeMap<>( Collections.reverseOrder(String.CASE_INSENSITIVE_ORDER));
需要说明的是,TreeMap使用键的比较结果对键进行排重,即使键实际上不同,但只要比较结果相同,它们就会被认为相同,键只会保存一份。比如,如下代码:
Map<String, String> map = new TreeMap<>(String.CASE_INSENSITIVE_ORDER); map.put("T", "tree"); map.put("t", "try"); for(Entry<String,String> kv : map.entrySet()){ System.out.print(kv.getKey()+"="+kv.getValue()+" "); }
看上去有两个不同的键"T"和"t",但因为比较器忽略大小写,所以只会有一个,输出会是:
T=try
键为第一次put时的,这里即"T",而值为最后一次put时的,这里即"try"。
日期例子
我们再来看一个例子,键为字符串形式的日期,值为一个统计数字,希望按照日期输出,代码为:
Map<String, Integer> map = new TreeMap<>(); map.put("2016-7-3", 100); map.put("2016-7-10", 120); map.put("2016-8-1", 90); for(Entry<String,Integer> kv : map.entrySet()){ System.out.println(kv.getKey()+","+kv.getValue()); }
输出为:
2016-7-10,120 2016-7-3,100 2016-8-1,90
7月10号的排在了7月3号的前面,与期望的不符,这是因为,它们是按照字符串比较的,按字符串,2016-7-10就是小于2016-7-3,因为第一个不同之处1小于3。
怎么解决呢?可以使用一个自定义的比较器,将字符串转换为日期,按日期进行比较,第一行代码可以改为:
Map<String, Integer> map = new TreeMap<>(new Comparator<String>() { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd"); @Override public int compare(String o1, String o2) { try { return sdf.parse(o1).compareTo(sdf.parse(o2)); } catch (ParseException e) { e.printStackTrace(); return 0; } } });
这样,输出就符合期望了,会变为:
2016-7-3,100 2016-7-10,120 2016-8-1,90
基本用法小结
以上就是TreeMap的基本用法,与HashMap相比:
- 相同的是,它们都实现了Map接口,都可以按Map进行操作。
- 不同的是,迭代时,TreeMap按键有序,为了实现有序,它要求:要么键实现Comparable接口,要么创建TreeMap时传递一个Comparator对象。
不过,由于TreeMap按键有序,它还支持更多接口和方法,具体来说,它还实现了SortedMap和NavigableMap接口,而NavigableMap接口扩展了SortedMap,我们来看一下这两个接口。
高级用法
SortedMap接口
SortedMap接口的定义为:
public interface SortedMap<K,V> extends Map<K,V> { Comparator<? super K> comparator(); SortedMap<K,V> subMap(K fromKey, K toKey); SortedMap<K,V> headMap(K toKey); SortedMap<K,V> tailMap(K fromKey); K firstKey(); K lastKey(); }
firstKey返回第一个键,而lastKey返回最后一个键。
headMap/tailMap/subMap都返回一个视图,视图中包括一部分键值对,它们的区别在于键的取值范围:
- headMap:为小于toKey的所有键
- tailMap:为大于等于fromKey的所有键
- subMap:为大于等于fromKey且小于toKey的所有键。
NavigableMap接口
NavigableMap扩展了SortedMap,主要增加了一些查找邻近键的方法,比如:
Map.Entry<K,V> floorEntry(K key); Map.Entry<K,V> lowerEntry(K key); Map.Entry<K,V> ceilingEntry(K key); Map.Entry<K,V> higherEntry(K key);
参数key对应的键不一定存在,但这些方法可能都有返回值,它们都返回一个邻近键值对,它们的区别在于,这个邻近键与参数key的关系。
- floorEntry:邻近键是小于等于key的键中最大的
- lowerEntry:邻近键是严格小于key的键中最大的
- ceilingEntry:邻近键是大于等于key的键中最小的
- higherEntry:邻近键是严格大于key的键中最小的
如果没有对应的邻近键,返回值为null。这些方法也都有对应的只返回键的方法:
K floorKey(K key); K lowerKey(K key); K ceilingKey(K key); K higherKey(K key);
相比SortedMap中的方法headMap/tailMap/subMap,NavigableMap也增加了一些方法,以更为明确的方式指定返回值中是否包含边界值,如:
NavigableMap<K,V> headMap(K toKey, boolean inclusive); NavigableMap<K,V> tailMap(K fromKey, boolean inclusive); NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive);
相比SortedMap中对头尾键的基本操作,NavigableMap增加了如下方法:
Map.Entry<K,V> firstEntry(); Map.Entry<K,V> lastEntry(); Map.Entry<K,V> pollFirstEntry(); Map.Entry<K,V> pollLastEntry();
firstEntry返回第一个键值对,lastEntry返回最后一个。pollFirstEntry删除并返回第一个键值对,pollLastEntry删除并返回最后一个。
此外,NavigableMap有如下方法,可以方便的逆序访问:
NavigableMap<K,V> descendingMap(); NavigableSet<K> descendingKeySet();
示例代码
我们看一段简单的示例代码,逻辑比较简单,就不解释了,主要是增强直观感受,其中输出用注释说明了:
NavigableMap<String, String> map = new TreeMap<>(); map.put("a", "abstract"); map.put("f", "final"); map.put("c", "call"); //输出:a=abstract System.out.println(map.firstEntry()); //输出:f=final System.out.println(map.lastEntry()); //输出:c=call System.out.println(map.floorEntry("d")); //输出:f=final System.out.println(map.ceilingEntry("d")); //输出:{c=call, a=abstract} System.out.println(map.descendingMap() .subMap("d", false, "a", true));
了解了TreeMap的用法,接下来,我们来看TreeMap的实现原理。
基本实现原理
TreeMap内部是用红黑树实现的,红黑树是一种大致平衡的排序二叉树,上节我们介绍了排序二叉树的基本概念和算法,本节我们主要看TreeMap的一些代码实现,先来看TreeMap的内部组成。
内部组成
TreeMap内部主要有如下成员:
private final Comparator<? super K> comparator; private transient Entry<K,V> root = null; private transient int size = 0;
comparator就是比较器,在构造方法中传递,如果没传,就是null。size为当前键值对个数。root指向树的根节点,从根节点可以访问到每个节点,节点的类型为Entry。Entry是TreeMap的一个内部类,其内部成员和构造方法为:
static final class Entry<K,V> implements Map.Entry<K,V> { K key; V value; Entry<K,V> left = null; Entry<K,V> right = null; Entry<K,V> parent; boolean color = BLACK; /** * Make a new cell with given key, value, and parent, and with * {@code null} child links, and BLACK color. */ Entry(K key, V value, Entry<K,V> parent) { this.key = key; this.value = value; this.parent = parent; } }
每个节点除了键(key)和值(value)之外,还有三个引用,分别指向其左孩子(left)、右孩子(right)和父节点(parent),对于根节点,父节点为null,对于叶子节点,孩子节点都为null,还有一个成员color表示颜色,TreeMap是用红黑树实现的,每个节点都有一个颜色,非黑即红。
了解了TreeMap的内部组成,我们来看一些主要方法的实现代码。
保存键值对
put方法的代码稍微有点长,我们分段来看,先看第一段,添加第一个节点的情况:
public V put(K key, V value) { Entry<K,V> t = root; if (t == null) { compare(key, key); // type (and possibly null) check root = new Entry<>(key, value, null); size = 1; modCount++; return null; } ...
当添加第一个节点时,root为null,执行的就是这段代码,主要就是新建一个节点,设置root指向它,size设置为1,modCount++的含义与之前几节介绍的类似,用于迭代过程中检测结构性变化。
令人费解的是compare调用,compare(key, key);,key与key比,有什么意义呢?我们看compare方法的代码:
final int compare(Object k1, Object k2) { return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2) : comparator.compare((K)k1, (K)k2); }
其实,这里的目的不是为了比较,而是为了检查key的类型和null,如果类型不匹配或为null,compare方法会抛出异常。
如果不是第一次添加,会执行后面的代码,添加的关键步骤是寻找父节点,找父节点根据是否设置了comparator分为两种情况,我们先来看设置了的情况,代码为:
int cmp; Entry<K,V> parent; // split comparator and comparable paths Comparator<? super K> cpr = comparator; if (cpr != null) { do { parent = t; cmp = cpr.compare(key, t.key); if (cmp < 0) t = t.left; else if (cmp > 0) t = t.right; else return t.setValue(value); } while (t != null); }
寻找是一个从根节点开始循环的过程,在循环中,cmp保存比较结果,t指向当前比较节点,parent为t的父节点,循环结束后parent就是要找的父节点。
t一开始指向根节点,从根节点开始比较键,如果小于根节点,就将t设为左孩子,与左孩子比较,大于就与右孩子比较,就这样一直比,直到t为null或比较结果为0。如果比较结果为0,表示已经有这个键了,设置值,然后返回。如果t为null,则当退出循环时,parent就指向待插入节点的父节点。
我们再来看没有设置comparator的情况,代码为:
else { if (key == null) throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key; do { parent = t; cmp = k.compareTo(t.key); if (cmp < 0) t = t.left; else if (cmp > 0) t = t.right; else return t.setValue(value); } while (t != null); }
基本逻辑是一样的,当退出循环时parent指向父节点,只是,如果没有设置comparator,则假设key一定实现了Comparable接口,使用Comparable接口的compareTo方法进行比较。
找到父节点后,就是新建一个节点,根据新的键与父节点键的比较结果,插入作为左孩子或右孩子,并增加size和modCount,代码如下:
Entry<K,V> e = new Entry<>(key, value, parent); if (cmp < 0) parent.left = e; else parent.right = e; fixAfterInsertion(e); size++; modCount++;
代码大部分都容易理解,不过,里面有一行重要调用fixAfterInsertion(e);,它就是在调整树的结构,使之符合红黑树的约束,保持大致平衡,其代码我们就不介绍了。
稍微总结一下,其基本思路就是,循环比较找到父节点,并插入作为其左孩子或右孩子,然后调整保持树的大致平衡。
根据键获取值
代码为:
public V get(Object key) { Entry<K,V> p = getEntry(key); return (p==null ? null : p.value); }
就是根据key找对应节点p,找到节点后获取值p.value,来看getEntry的代码:
final Entry<K,V> getEntry(Object key) { // Offload comparator-based version for sake of performance if (comparator != null) return getEntryUsingComparator(key); if (key == null) throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key; Entry<K,V> p = root; while (p != null) { int cmp = k.compareTo(p.key); if (cmp < 0) p = p.left; else if (cmp > 0) p = p.right; else return p; } return null; }
如果comparator不为空,调用单独的方法getEntryUsingComparator,否则,假定key实现了Comparable接口,使用接口的compareTo方法进行比较,找的逻辑也很简单,从根开始找,小于往左边找,大于往右边找,直到找到为止,如果没找到,返回null。getEntryUsingComparator方法的逻辑是类似,就不赘述了。
查看是否包含某个值
TreeMap可以高效的按键进行查找,但如果要根据值进行查找,则需要遍历,我们来看代码:
public boolean containsValue(Object value) { for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) if (valEquals(value, e.value)) return true; return false; }
主体就是一个循环遍历,getFirstEntry方法返回第一个节点,successor方法返回给定节点的后继节点,valEquals就是比较值,从第一个节点开始,逐个进行比较,直到找到为止,如果循环结束也没找到则返回false。
getFirstEntry的代码为:
final Entry<K,V> getFirstEntry() { Entry<K,V> p = root; if (p != null) while (p.left != null) p = p.left; return p; }
代码很简单,第一个节点就是最左边的节点。
上节我们介绍过找后继的算法,successor的具体代码为:
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { if (t == null) return null; else if (t.right != null) { Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } else { Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }
如上节后继算法所述,有两种情况:
- 如果有右孩子(t.right!=null),则后继为右子树中最小的节点。
- 如果没有右孩子,后继为某祖先节点,从当前节点往上找,如果它是父节点的右孩子,则继续找父节点,直到它不是右孩子或父节点为空,第一个非右孩子节点的父亲节点就是后继节点,如果父节点为空,则后继为null。
代码与算法是对应的,就不再赘述了,下面重复一下上节的一个后继图(绿色箭头表示后继)以方便对照:
根据键删除键值对
删除的代码为:
public V remove(Object key) { Entry<K,V> p = getEntry(key); if (p == null) return null; V oldValue = p.value; deleteEntry(p); return oldValue; }
根据key找到节点,调用deleteEntry删除节点,然后返回原来的值。
上节介绍过节点删除的算法,节点有三种情况:
- 叶子节点:这个容易处理,直接修改父节点对应引用置null即可。
- 只有一个孩子:就是在父亲节点和孩子节点直接建立链接。
- 有两个孩子:先找到后继,找到后,替换当前节点的内容为后继节点,然后再删除后继节点,因为这个后继节点一定没有左孩子,所以就将两个孩子的情况转换为了前面两种情况。
deleteEntry的具体代码也稍微有点长,我们分段来看:
private void deleteEntry(Entry<K,V> p) { modCount++; size--; // If strictly internal, copy successor's element to p and then make p // point to successor. if (p.left != null && p.right != null) { Entry<K,V> s = successor(p); p.key = s.key; p.value = s.value; p = s; } // p has 2 children
这里处理的就是两个孩子的情况,s为后继,当前节点p的key和value设置为了s的key和value,然后将待删节点p指向了s,这样就转换为了一个孩子或叶子节点的情况。
再往下看一个孩子情况的代码:
// Start fixup at replacement node, if it exists. Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // Link replacement to parent replacement.parent = p.parent; if (p.parent == null) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion. p.left = p.right = p.parent = null; // Fix replacement if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null) { // return if we are the only node.
p为待删节点,replacement为要替换p的孩子节点,主体代码就是在p的父节点p.parent和replacement之间建立链接,以替换p.parent和p原来的链接,如果p.parent为null,则修改root以指向新的根。fixAfterDeletion重新平衡树。
最后来看叶子节点的情况:
} else if (p.parent == null) { // return if we are the only node. root = null; } else { // No children. Use self as phantom replacement and unlink. if (p.color == BLACK) fixAfterDeletion(p); if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } }
再具体分为两种情况,一种是删除最后一个节点,修改root为null,否则就是根据待删节点是父节点的左孩子还是右孩子,相应的设置孩子节点为null。
实现原理小结
以上就是TreeMap的基本实现原理,与上节介绍的排序二叉树的基本概念和算法是一致的,只是TreeMap用了红黑树。
TreeMap特点分析
与HashMap相比,TreeMap同样实现了Map接口,但内部使用红黑树实现,红黑树是统计效率比较高的大致平衡的排序二叉树,这决定了它有如下特点:
- 按键有序,TreeMap同样实现了SortedMap和NavigableMap接口,可以方便的根据键的顺序进行查找,如第一个、最后一个、某一范围的键、邻近键等。
- 为了按键有序,TreeMap要求键实现Comparable接口或通过构造方法提供一个Comparator对象。
- 根据键保存、查找、删除的效率比较高,为O(h),h为树的高度,在树平衡的情况下,h为log2(N),N为节点数。
应该用HashMap还是TreeMap呢?不要求排序,优先考虑HashMap,要求排序,考虑TreeMap。
小结
本节介绍了TreeMap的用法和实现原理,在用法方面,它实现了Map接口,但按键有序,同样实现了SortedMap和NavigableMap接口,在内部实现上,它使用红黑树,整体效率比较高。
HashMap有对应的TreeMap,HashSet也有对应的TreeSet,下节,我们来看TreeSet。
---------------
未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。