清华刘知远:写给想要填报CS/AI志愿的考生们

清华刘知远:写给想要填报CS/AI志愿的考生们

【新智元导读】高考结束填报志愿是每个考生人生中最重要的事情之一,今年的人工智能专业显然是最时髦的,各大高校将迎来第一批AI本科生。但是报考AI专业该怎么选、有什么注意事项、去哪儿学呢?下面由清华大学计算机系自然语言处理实验室副教授刘知远为广大考生答疑解惑。

国内CS/AI方向又有很多新的变化,最明显的是各大高校纷纷设立人工智能学院,开始招收人工智能专业本科生。最近又要开始新的一轮填报志愿,我又来蹭个热点,花了些时间整理出这篇短文,聊聊人工智能是什么、学什么、怎么学、以及去哪儿学的问题。

Q:人工智能是什么?

A:人工智能(Artificial Intelligence,AI)是一门年轻的学科,从1956年达特茅斯会议正式提出AI名称至今不过65年;从阿兰图灵1950年提出判断机器是否能够思考的图灵测试至今也不过70年时间。AI的70年发展史汇集了来自数学、计算机科学、逻辑学、哲学、神经科学、语言学等不同领域学者的努力,是典型的交叉学科。同时,从整体来看AI仍然是计算机科学技术的主要分支。

人工智能是什么?简言之,人工智能学科是利用计算机实现人类智能。人类智能并没有公认的定义与界限,实际上也随着AI的发展而有所变化。某项人类技能被计算机所掌握后,人们往往不再认为它代表人类"真正"的智能。例如,1997年IBM深蓝战胜人类国际象棋冠军卡斯帕罗夫后,就有评论说IBM计算机只是在暴力搜索,不是真正的智能,that's not thinking!这种现象又被称为"AI Effect"。

所以,人工智能总是聚焦在那些尚未被计算机破解的人类智能能力上。比较简单的人类智能已经被解决了,例如计数能力有了计算器,数据记忆和查询有了数据库,下棋能力有了下棋软件,剩下的是那些困难的高级智能。简单而言,如果我们把大脑看做一个黑盒,它能够接受外部世界的刺激信号,大脑处理这些信号产生输出反馈,人类智能正体现在这些"刺激-反馈"的对应中。针对不同刺激信号和反馈处理的复杂性,AI下面有很多专门的领域开展相关研究和探索。目前,公认的AI核心课题包括:机器学习、计算机视觉、自然语言处理、语音识别、知识表示与计算、推理与规划,等等,并在此基础上支持着许多重要应用场景如无人驾驶(无人车)、机器人等。

机器学习:旨在让计算机具备自动学习的能力,能够解决分类、聚类、回归、关联分析等任务。目前主流是从大规模数据中自动学习和总结规律,从而能够对新的数据进行预测,也被称为统计机器学习。简单地讲,机器学习是从大量"刺激-反馈"数据中自动总结规律的技术。

计算机视觉:旨在让计算机理解和处理图像数据(包括图片、视频等),使计算机掌握"看"的能力。图像是典型的无结构数据,由像素组成,如何从一幅图像中自动识别不同层次的对象(如轮廓、人脸、场景等)及其复杂关联,是计算机视觉面临的挑战问题。

语音识别:旨在让计算机理解和处理语音数据,使计算机掌握"听"的能力。语音也是一种典型的无结构序列数据,目前在深度学习技术的支持下,普通场景的语音转文本的效果已经得到广泛应用。而在多人、方言、噪音、远场等极端挑战场景下,语音识别效果还需要进一步提升。

自然语言处理:旨在让计算机理解和处理人类语言。与C++、Java等人工设计的编程语言不同,人类语言是大自然的产物,因此被称为"自然语言"。人类语言也是典型的无结构数据,由字词组合而成,如何理解一句话、一篇文章甚至一本书的意思,也是人工智能面临的挑战问题。由于语言是人类特有的传递丰富信息和知识、表达复杂思想和情绪的载体,甚至被认为是人类思考的重要工具,因此自然语言处理问题更接近人类高级认知智能,有很多重要的开放问题。

知识表示与计算:人类对世界的认识积累形成了知识,知识是人类理解外部信息、实现各种智能能力的基础。近年来随着知识图谱的广泛应用,成为研究界和工业界关注的重点问题。

由于上述这些课题都关涉人类智能,所以互相密切关联、不分彼此,例如计算机视觉、语音识别和自然语言处理都是机器学习算法的重要应用场景,知识表示与计算也成为计算机视觉和自然语言处理方向的重要话题,等等。正因为年轻,这些方向都充满着活力,一方面最新技术日益深远地影响着人类社会生活的方方面面,同时学科体系和技术框架也在飞速地日新月异、推陈出新,现在去翻十年前的教材很多内容都显得过时了。

从学科设置来看,国内大学遵照教育部《学位授予和人才培养学科目录》来颁发学位。最初的计算机一级学科是"计算机科学与技术",下设"计算机系统结构"、"计算机软件与理论"、"计算机应用技术"三个二级学科,其中"计算机系统结构"对应高性能计算(超算)和计算机网络体系架构(互联网),后来单独成立出"网络空间安全"一级学科;"计算机软件与理论"对应软件工程和计算机理论科学等,后来单独成立出"软件工程"一级学科;而"计算机应用技术"则对应计算机的各类应用技术,很大程度上正沿着从信息化到自动化再到智能化的路线前进,可以想见,如果现在这波AI浪潮还能持续几年,单独成立"人工智能"一级学科也指日可待。

从研究配置来看,AI研究队伍主要分布在计算机、自动化、电子工程等信息科学相关院系中,这与AI起源有密切关系,计算机的奠基人图灵、冯诺依曼,自动化的主要理论基础"控制论"的奠基人维纳,以及电子工程和信号处理的主要组成"信息论"的奠基人香农,均为AI的创立贡献了思想。所以,计算机系主要从计算理论和计算机应用的角度研究AI,自动化系从自动控制的角度理解AI,电子工程系则从信号处理(将AI关心的视觉、文本、听觉等模态理解问题看做信号处理)的角度解读AI。

当然,在哲学、脑神经等其他领域也有从事人工智能探索的学者。不过总体而言,由于人工智能核心目标是探索如何将人类智能转化为可计算问题,因此它主要还是落在计算机领域。

如果希望对AI发展有比较通俗全面的了解,可以参考以下两本书:《人工智能狂潮》虽然标题名略显中2,内容比较扎实,浅显全面并及时涵盖到最近的深度学习浪潮;《人工智能简史》是华人尼克的大作,作者搜集的史料全面扎实,夹叙夹议有很多干货,读起来很过瘾,不过很多地方点到即止,如果没有相关背景知识很难看懂作者所指。

Q:人工智能学什么?

A:如前所述,人工智能大致还是一个计算机应用的课题。虽然这两年国内外已有很多高校开设了人工智能班和专业,课程设置还没有形成共识。我们可以从国内AI本科教育体系的先声——南京大学人工智能学院发布的《南京大学人工智能本科专业教育培养体系》做一些分析。

作为对比,这里列出清华大学计算机科学与技术系的选课指导清单,其中用红框标出了与人工智能有关的限选课程。

清华刘知远:写给想要填报CS/AI志愿的考生们

可以看到,人工智能需要学习的主要内容包括:

数学基础课:清华CS和南大AI都需要学习的有 微积分(或数学分析)、代数与几何、离散数学(或数理逻辑、图论等)、概率论。南大AI新增 最优化方法,这在清华CS为研究生课程。

学科基础课:清华CS和南大AI都需要学习的有 程序设计基础、数据结构、人工智能导论、计算机原理、数字电路、系统控制。南大AI新增 机器学习、知识表示、计算机视觉、自然语言处理 作为学科基础课,这在清华CS均为高年级选修课或研究生课程;清华CS需要额外学习 电路原理、信号处理、操作系统、编译原理、形式语言与自动机,这些被南大AI列为专业选修课。

专业选修课:南大AI设立了很多AI相关的专业选修课,如 自动规划、概率图模型、强化学习、神经网络、深度学习等,在清华CS均为人工智能方向研究生课程;而南大AI设立的很多认知科学、神经科学、计算金融、计算生物学、计算语言学等交叉课程,在清华则分散在各院系开设的课程。

由此可以总结,目前看AI本科专业核心课程的设置与计算机专业相比,重叠部分要远大于差异部分。可以看出南大在AI课程体系构建方面花费了大量心力,非常符合AI的当前发展特点。

所以,回到这个问题,人工智能学什么?建议就是以计算机核心课程(数学基础课、学科基础课)为学科主线,以 机器学习、知识表示、计算机视觉、自然语言处理 为学科特色,以学科交叉为辅助。因此,我们也可以说,无论是在以南京大学人工智能学院为代表的新成立的人工智能专业,还是以清华大学计算机系为代表的计算机专业,都可以完成对人工智能基础知识的学习。不同之处在于,前者预置为学科基础课,后者则成为高年级时的可选方向(计算机系统结构、计算机软件与理论、计算机应用技术)之一的计算机应用技术,如下是该方向的专业限选课程列表,其中超过一半课程是AI相关。

清华刘知远:写给想要填报CS/AI志愿的考生们

如果对这些课程要学什么感兴趣,可以购买查阅《南京大学人工智能本科专业教育培养体系》或者使用搜索引擎检索相关介绍。

Q:人工智能怎么学?

A:清华大学章程明确提出"价值塑造、能力培养、知识传授"三位一体的育人模式,我认为这是高水平AI人才养成方式的最佳描述。

知识传授这层不必多说,师者传道受业解惑,在大学里通过课程讲授和课下实践,研习精通计算机和人工智能理论与技术,每位同学通过一门门课程成绩反映出的,正是专业知识掌握的水平。我想,绝大部分同学都能明白课程学习的重要性。然而,大学之道不仅于此,不然大学就不过是个专业技校。

在知识传授之上就要构筑能力培养,这对CS/AI专业而言尤其重要。计算机和人工智能是非常年轻的学科,正处在飞速发展的朝阳时期,学科知识更新换代很快,大部分最新知识根本无法在短时间内及时沉淀到教科书中。而进入教科书的那些知识,与实际应用场景往往已有较大距离。很多CS/AI高科技公司自身就站在学科最前沿,亟需有快速学习和独立解决开放问题能力的人才。

这样,一方面要求同学有意识建立终身学习的理念,有较强的独立学习的能力;另一方面则要求同学注意通过实验室研究等方式锻炼科研创新能力。CS/AI同学们需要主动参与科研工作的全过程,树立专业志趣,培养独立学习的能力、自我学习的习惯、提出问题的意识、以及独立解决开放问题的能力,这是大学培养CS/AI高水平人才的必由之路。因此,大学教师在CS/AI开展高水平原创研究的能力,也一定程度上决定了他们对学生进行能力培养的水平。

最后一层价值塑造也许是最玄乎的,但更加重要。一个人在知识和能力确定的情况下,Ta的努力方向和坚持程度最终决定其成长的高度。找到在术业上的坚持方向,就是价值塑造的过程。这个过程绝不是简单粗暴的灌输和宣讲就能实现的,要有高水平的教师一起教学相长,有志存高远的同学共同努力拼搏,有各界奋斗的学长作为示范榜样,有校外海外的实践平台广开视野。实践出真知,只有自己多听多看多想,才能找到自己喜欢的、努力的方向,也才更有后劲坚持不懈。

所以,不管是人工智能、计算机专业还是其他什么专业,只要想把自己培养成为该领域的可堪大用之才,就需要从知识、能力和价值这三个层面来努力提升自己。

Q:人工智能去哪学?

A:上面说了这么多,接下来图穷匕见,再聊聊国内人工智能应该去哪里学。根据前面几个问题的回答,可以从师资水平、课程设置等方面来做判断,其中师资水平应该是最重要的因素,而课程设置、培养水平等与师资水平直接正相关。

我推荐UMass教授Emery Berger维护的高校计算机科学领域排名CSRankings,采用DBLP数据库中大学CS/AI教授在不同方向顶级会议上发表的论文数量进行排名,有客观确切数据支持,例如美国号称CS四大名校的Stanford、MIT、UCB和CMU就排在美国前四位。同时CSRankings工程和数据全部开源在github上,可以非常方便地进行检查、复现和扩展。

CSRankings将CS划分为AI、Systems、Theory、Interdisciplinary Areas四个一级方向,每个方向有有若干子领域,例如AI就又下分General AI (AI总方向)、Computer Vision (计算机视觉)、Machine Learning & Data Mining(机器学习与数据挖掘)、Natural Language Processing(自然语言处理)、The Web & Information Retrieval(互联网与信息检索)。每个字领域只收录2-3个顶级会议,这主要是因为计算机科学技术由于发展比较快,所以学者们更重视通过国际会议论文发表最新成果进行学术交流,而不像其他领域那样主要是通过期刊发表最新研究成果。

由于CSRankings原网站没有提供中国单列的高校排名,国内学术网站AMiner做了一个改进版,除了提供中国高校单列名单外,还额外提供根据论文引用数量的排名。如果按照2009-2019十年间论文发表统计,我简单统计了国内AI/CS排名较高的高校(不含香港台湾高校、不考虑中科院)如下:

清华刘知远:写给想要填报CS/AI志愿的考生们

这个排序大致能够反映各大高校CS/AI专业的国际学术前沿整体水平,而且通过AI领域和CS整体的排名反差,可以观察到该高校AI方向的强势程度,例如复旦的AI排名高于其CS排名2位,哈工大AI排名高于CS排名3位等等,说明这两所大学的AI方向相对比较强势。而且,还可以看出,国内高校AI领域的世界排名整体明显超过CS整体的世界排名,说明国内高校在AI方面更接近世界前沿水平。

需要注意:(1)这个统计结果只能反映师资力量的一个侧面,而很多国内高校如北航、国防科大等在国家信息科学重大需求方面做出的巨大贡献如天河等,并无法客观反映到这个统计中。(2)由于CSRankings作者Emery Berger坚持只收录能招收博士的CS教授,因此那些在电子工程或自动华系等其他非CS系的教授没有被收录进来,从而导致该清单并不能完全反映各大高校的AI等领域的师资水平,但也正因为其只收录CS教授,也许对于我们评判这些高校的CS专业师资力量更有帮助。此外,部分高校可能存在教授列表不全等问题,而CSRankings接受修改申请,建议国内高校相关院系如果有遗漏CS教师的可以去申请更新。

CSRankings主要以高校为单位进行排序,前几天我组同学用CSRankings开源数据,对AI领域的国内C9高校学者进行了排序,可以看到前20的学者有7位清华、5位北大、2位南大、2位浙大、2位哈工大、2位复旦,可以从另一个侧面反映各高校的AI师资力量。

总之,我认为CSRankings是很好地定量了解各高校CS各领域研究实力和师资力量的平台,例如下面就是CSRankings提供的清北两校不同领域发表论文分布的饼状图。

清华刘知远:写给想要填报CS/AI志愿的考生们

最后特别说明,这些仅为一家之言,不代表任何机构。我很乐意解答大家提出的更多通用问题,但不提供具体填报志愿的咨询。希望能帮上今年那些对CS/AI感兴趣的考生。衷心祝愿大家不畏浮云,理性判断,做好人生的重要选择。

本文经授权转载自清华大学计算机系自然语言处理实验室刘知远副教授

原文地址:https://zhuanlan.zhihu.com/p/68474477

相关推荐