#include <stdio.h>
#include <string.h>
#define N 50 //叶子结点数
#define M 2*N-1 //树中结点总数
typedef struct
{
char data[5]; //结点值
int weight; //权重
int parent; //双亲结点
int lchild; //左孩子结点
int rchild; //右孩子结点
} HTNode;
typedef struct
{
char cd[N]; //存放哈夫曼码
int start;
} HCode;
void CreateHT(HTNode ht[],int n) //由ht的叶子结点构造完整的哈夫曼树
{
int i,k,lnode,rnode;
int min1,min2;
for (i=0;i<2*n-1;i++) //所有结点的相关域置初值-1
ht[i].parent=ht[i].lchild=ht[i].rchild=-1;
for (i=n;i<2*n-1;i++) //构造哈夫曼树的分支结点
{
min1=min2=32767; //lnode和rnode为最小权重的两个结点位置
lnode=rnode=-1;
for (k=0;k<=i-1;k++) //查找最小和次小的结点
if (ht[k].parent==-1) //只在尚未构造二叉树的结点中查找
{
if (ht[k].weight<min1)
{
min2=min1;rnode=lnode;
min1=ht[k].weight;lnode=k;
}
else if (ht[k].weight<min2)
{
min2=ht[k].weight;rnode=k;
}
}
ht[lnode].parent=i;ht[rnode].parent=i; //合并两个最小和次小的结点
ht[i].weight=ht[lnode].weight+ht[rnode].weight;
ht[i].lchild=lnode;ht[i].rchild=rnode;
}
}
void CreateHCode(HTNode ht[],HCode hcd[],int n) //由哈夫曼树ht构造哈夫曼编码hcd
{
int i,f,c;
HCode hc;
for (i=0;i<n;i++) //根据哈夫曼树构造所有叶子结点的哈夫曼编码
{
hc.start=n;c=i;
f=ht[i].parent;
while (f!=-1) //循环直到树根结点
{
if (ht[f].lchild==c) //处理左孩子结点
hc.cd[hc.start--]=‘0‘;
else //处理右孩子结点
hc.cd[hc.start--]=‘1‘;
c=f;f=ht[f].parent;
}
hc.start++; //start指向哈夫曼编码最开始字符
hcd[i]=hc;
}
}
void DispHCode(HTNode ht[],HCode hcd[],int n) //输出哈夫曼编码
{
int i,k;
int sum=0,m=0,j;
printf("输出哈夫曼编码:\n");
for (i=0;i<n;i++)
{
j=0;
printf(" %s:\t",ht[i].data);
for (k=hcd[i].start;k<=n;k++)
{
printf("%c",hcd[i].cd[k]);
j++;
}
m+=ht[i].weight;
sum+=ht[i].weight*j;
printf("\n");
}
printf("平均长度=%g\n",1.0*sum/m);
}
int main()
{
int n=6,i;
char *str[]={"a","b","c","d","e","f"};
int fnum[]={45,13,12,16,9,5};
HTNode ht[M];
HCode hcd[N];
for (i=0;i<n;i++)
{
strcpy(ht[i].data,str[i]);
ht[i].weight=fnum[i];
}
CreateHT(ht,n);
CreateHCode(ht,hcd,n);
DispHCode(ht,hcd,n);
return 1;
}