Hadoop YARN配置参数剖析(5)—Capacity Scheduler相关参数

Capacity Scheduler是YARN中默认的资源调度器。

想要了解Capacity Scheduler是什么,可阅读我的这篇文章“Hadoop Capacity Scheduler分析”

在Capacity Scheduler的配置文件中,队列queueX的参数Y的配置名称为yarn.scheduler.capacity.queueX.Y,为了简单起见,我们记为Y,则每个队列可以配置的参数如下:

1.  资源分配相关参数

(1)  capacity:队列的资源容量(百分比)。 当系统非常繁忙时,应保证每个队列的容量得到满足,而如果每个队列应用程序较少,可将剩余资源共享给其他队列。注意,所有队列的容量之和应小于100。

(2)  maximum-capacity:队列的资源使用上限(百分比)。由于存在资源共享,因此一个队列使用的资源量可能超过其容量,而最多使用资源量可通过该参数限制。

minimum-user-limit-percent:每个用户最低资源保障(百分比)。任何时刻,一个队列中每个用户可使用的资源量均有一定的限制。当一个队列中同时运行多个用户的应用程序时中,每个用户的使用资源量在一个最小值和最大值之间浮动,其中,最小值取决于正在运行的应用程序数目,而最大值则由minimum-user-limit-percent决定。比如,假设minimum-user-limit-percent为25。当两个用户向该队列提交应用程序时,每个用户可使用资源量不能超过50%,如果三个用户提交应用程序,则每个用户可使用资源量不能超多33%,如果四个或者更多用户提交应用程序,则每个用户可用资源量不能超过25%。

(3)  user-limit-factor:每个用户最多可使用的资源量(百分比)。比如,假设该值为30,则任何时刻,每个用户使用的资源量不能超过该队列容量的30%。

2.  限制应用程序数目相关参数

(1)  maximum-applications :集群或者队列中同时处于等待和运行状态的应用程序数目上限,这是一个强限制,一旦集群中应用程序数目超过该上限,后续提交的应用程序将被拒绝,默认值为 10000。所有队列的数目上限可通过参数yarn.scheduler.capacity.maximum-applications设置(可看做默认 值),而单个队列可通过参数yarn.scheduler.capacity.<queue-path>.maximum- applications设置适合自己的值。

(2)  maximum-am-resource-percent:集群中用于运行应用程序 ApplicationMaster的资源比例上限,该参数通常用于限制处于活动状态的应用程序数目。该参数类型为浮点型,默认是0.1,表示10%。所 有队列的ApplicationMaster资源比例上限可通过参数yarn.scheduler.capacity. maximum-am-resource-percent设置(可看做默认值),而单个队列可通过参数 yarn.scheduler.capacity.<queue-path>. maximum-am-resource-percent设置适合自己的值。

3.  队列访问和权限控制参数

(1)  state 队列状态可以为STOPPED或者 RUNNING,如果一个队列处于STOPPED状态,用户不可以将应用程序提交到该队列或者它的子队列中,类似的,如果ROOT队列处于STOPPED 状态,用户不可以向集群中提交应用程序,但正在运行的应用程序仍可以正常运行结束,以便队列可以优雅地退出。

(2)  acl_submit_applications:限定哪些Linux用户/用户组可向给定队列中提交应用程序。需要注意的是,该属性具有继承性,即如果一个用户可以向某个队列中提交应用程序,则它可以向它的所有子队列中提交应用程序。配置该属性时,用户之间或用户组之间用“,”分割,用户和用户组之间用空格分割,比如“user1, user2 group1,group2”。

(3)  acl_administer_queue:为队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等。同样,该属性具有继承性,如果一个用户可以向某个队列中提交应用程序,则它可以向它的所有子队列中提交应用程序。

一个配置文件实例如下:

相关推荐